ﻻ يوجد ملخص باللغة العربية
Gravitational redshift is generally reported by most of the authors without considering the influence of the energy of the test particle using various spacetime geometries such as Schwarzschild, Reissner-Nordstrom, Kerr and Kerr-Newman geometries for static, charged static, rotating and charged rotating objects respectively. In the present work, the general expression for the energy dependent gravitational redshift is derived for charged rotating body using the Kerr-Newman geometry along with the energy dependent gravitys rainbow function. It is found that the gravitational redshift is influenced by the energy of the source or emitter. One may obtain greater correction in the value of gravitational redshift, using the high energy photons. Knowing the value of gravitational redshift from a high energy sources such as Gamma-ray Bursters (GRB), one may obtain the idea of upper bounds on the dimensionless rainbow function parameter ($xi$). Also there may be a possibility to introduce a new physical scale of the order of $frac{xi}{E_{Pl}}$.
In this paper, we study the various cylindrical solutions (cosmic strings) in gravitys rainbow scenario. In particular, we calculate the gravitational field equations corresponding to energy-dependent background. Further, we discuss the possible Kasn
In this paper, we will study the rainbow deformation of the FRW cosmology in both Einstein gravity and Gauss-Bonnet gravity. We will demonstrate that the singularity in the FRW cosmology can be removed because of the rainbow deformation of the FRW me
We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is comp
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. I
We use Heun type solutions given in cite{Suzuki} for the radial Teukolsky equation, written in the background metric of the Kerr-Newman-de Sitter geometry, to calculate the quasinormal frequencies for polynomial solutions and the reflection coefficie