ﻻ يوجد ملخص باللغة العربية
Iodine (I$_2$) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by $langle cos^2 theta_{2D} rangle$, is measured as a function of the laser intensity. The results are well described by $langle cos^2 theta_{2D} rangle$ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a $sim$ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of $langle cos^2 theta_{2D} rangle$ achieved in He droplets exceed 0.96.
Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation sh
Dimers and trimers of carbonyl sulfide (OCS) molecules embedded in helium nanodroplets are aligned by a linearly polarized 160 ps long moderately intense laser pulse and Coulomb exploded with an intense 40 fs long probe pulse in order to determine th
We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS$_2$ and I$_2$ as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral li
Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical s
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiaba