ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond Laser Induced Coulomb Explosion Imaging of Aligned OCS Oligmers inside Helium Nanodroplets

81   0   0.0 ( 0 )
 نشر من قبل James D Pickering Mr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dimers and trimers of carbonyl sulfide (OCS) molecules embedded in helium nanodroplets are aligned by a linearly polarized 160 ps long moderately intense laser pulse and Coulomb exploded with an intense 40 fs long probe pulse in order to determine their structures. For the dimer, recording of 2D images of OCS$^+$ and S$^+$ ions and covariance analysis of the emission directions of the ions allow us to conclude that the structure is a slipped-parallel shape similar to the structure found for gas phase dimers. For the trimer, the OCS$^+$ ion images and corresponding covariance maps reveal the presence of a barrel-shaped structure (as in gas phase) but also other structures not present in the gas phase, most notably a linear chain structure.



قيم البحث

اقرأ أيضاً

We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics mu ch slower than that of isolated molecules and, surprisingly, complete absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.
We have deduced the structure of the ce{bromobenzene}--ce{I2} heterodimer and the ce{(bromobenzene)2} homodimer inside helium droplets using a combination of laser-induced alignment, Coulomb explosion imaging, and three-dimensional ion imaging. The c omplexes were fixed in a variety of orientations in the laboratory frame, then in each case multiply ionized by an intense laser pulse. A three dimensional ion imaging detector, including a Timepix3 detector allowed us to measure the correlations between velocity vectors of different fragments and, in conjunction with classical simulations, work backward to the initial structure of the complex prior to explosion. For the heterodimer, we find that the ce{I2} molecular axis intersects the phenyl ring of the bromobenzene approximately perpendicularly. The homodimer has a stacked parallel structure, with the two bromine atoms pointing in opposite directions. These results illustrate the ability of Coulomb explosion imaging to determine the structure of large complexes, and point the way toward real-time measurements of bimolecular reactions inside helium droplets.
Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical s tudies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wavepacket motion of indium dimers (In$_2$) for over 50 ps, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs pulses from a near-infrared laser. The alignment was probed through time-delayed ionization above the sulphur 2p edge, resulting in multiple ionization via Auger decay and subsequent Coulomb explosion of the molecules. The ionic fragments were collected using a time-of-flight mass spectrometer and the analysis of ion-ion covariance maps confirmed the correlation between fragments after Coulomb explosion. The analysis of the CO+ and S+ channels allowed us to extract the rotational dynamics, which is in agreement with our theoretical description as well as with previous experiments. This result opens the way for a new class of experiments at LDM within the field of coherent control of molecules with the possibilities that a precisely synchronized optical-pump XUV-probe laser setup like FERMI can offer.
The gas-phase structures of four difluoroiodobenzene and two dihydroxybromobenzene isomers were identified by correlating the emission angles of atomic fragment ions created following femtosecond laser-induced Coulomb explosion. The structural determ inations were facilitated by confining the most polarizable axis of each molecule to the detection plane prior to the Coulomb explosion event using one-dimensional laser-induced adiabatic alignment. For a molecular target consisting of two difluoroiodobenzene isomers, each constituent structure could additionally be singled out and distinguished.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا