ﻻ يوجد ملخص باللغة العربية
The arithmetic problem of factoring an integer $N$ can be translated into the physics of a quantum device, a result that supports Polyas and Hilberts conjecture to prove Riemanns hypothesis. The energies of this system, being univocally related to the factors of $N$, are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of $N$. This is equivalent to a quantum sieve that is demonstrated to require only $ o(log sqrt N)^3$ energy measurements to solve the problem, recovering Shors complexity result. Hence, the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
In this paper, we mainly consider the local indistinguishability of the set of mutually orthogonal bipartite generalized Bell states (GBSs). We construct small sets of GBSs with cardinality smaller than $d$ which are not distinguished by one-way loca
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti
It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their rela
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have b
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot