ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum simulation of the integer factorization problem: Bell states in a Penning trap

92   0   0.0 ( 0 )
 نشر من قبل Jose Luis Rosales B.
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

The arithmetic problem of factoring an integer $N$ can be translated into the physics of a quantum device, a result that supports Polyas and Hilberts conjecture to prove Riemanns hypothesis. The energies of this system, being univocally related to the factors of $N$, are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of $N$. This is equivalent to a quantum sieve that is demonstrated to require only $ o(log sqrt N)^3$ energy measurements to solve the problem, recovering Shors complexity result. Hence, the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.



قيم البحث

اقرأ أيضاً

In this paper, we mainly consider the local indistinguishability of the set of mutually orthogonal bipartite generalized Bell states (GBSs). We construct small sets of GBSs with cardinality smaller than $d$ which are not distinguished by one-way loca l operations and classical communication (1-LOCC) in $dotimes d$. The constructions, based on linear system and Vandermonde matrix, is simple and effective. The results give a unified upper bound for the minimum cardinality of 1-LOCC indistinguishable set of GBSs, and greatly improve previous results in [Zhang emph{et al.}, Phys. Rev. A 91, 012329 (2015); Wang emph{et al.}, Quantum Inf. Process. 15, 1661 (2016)]. The case that $d$ is odd of the results also shows that the set of 4 GBSs in $5otimes 5$ in [Fan, Phys. Rev. A 75, 014305 (2007)] is indeed a 1-LOCC indistinguishable set which can not be distinguished by Fans method.
290 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti cal forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their rela tionship with earlier debates on hidden states in quantum mechanics. The overarching insight was that not only hidden Markov processes, but also quantum random walks are finitary processes. Since finitary processes enjoy nice asymptotic properties, this also encourages to further investigate the asymptotic properties of quantum random walks. Here, answers to all these questions are given. Quantum random walks, hidden Markov processes and finitary processes are put into a unifying model context. In this context, quantum random walks are seen to not only enjoy nice ergodic properties in general, but also intuitive quantum-style asymptotic properties. It is also pointed out how hidden states arising from our framework relate to hidden states in earlier, prominent treatments on topics such as the EPR paradoxon or Bells inequalities.
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have b een huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits. The agent had the task of creating quantum circuits up to 5 qubits to generate GHZ states in the IBM Tenerife (IBM QX4) quantum processor. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
302 - G. Ciaramicoli , I. Marzoli , 2010
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot ential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا