ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition from vibrational to rotational characters in low-lying states of hypernuclei

50   0   0.0 ( 0 )
 نشر من قبل Jiangming Yao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to clarify the nature of hypernuclear low-lying states, we carry out a comprehensive study for the structure of $^{144-154}_{~~~~~~~~Lambda}$Sm-hypernuclei, which exhibit a transition from vibrational to rotational characters as the neutron number increases. To this end, we employ a microscopic particle-core coupling scheme based on a covariant density functional theory. We find that the positive-parity ground-state band in the hypernuclei shares a similar structure to that of the corresponding core nucleus. That is, regardless of whether the core nucleus is spherical or deformed, each hypernuclear state is dominated by the single configuration of the $Lambda$ particle in the $s_{1/2}$ state ($Lambda s_{1/2}$) coupled to one core state of the ground band. In contrast, the low-lying negative-parity states mainly consist of $Lambda p_{1/2}$ and $Lambda p_{3/2}$ configurations coupled to plural nuclear core states. We show that, while the mixing amplitude between these configurations is negligibly small in spherical and weakly-deformed nuclei, it strongly increases as the core nucleus undergoes a transition to a well-deformed shape, being consistent with the Nilsson wave functions. We demonstrate that the structure of these negative-parity states with spin $I$ can be well understood based on the $LS$ coupling scheme, with the total orbital angular momentum of $L=[Iotimes 1]$ and the spin angular momentum of $S=1/2$.



قيم البحث

اقرأ أيضاً

254 - Masayuki Matsuzaki 2014
The $gamma$ vibration is the most typical low-lying collective motion prevailing the nuclear chart. But only few one-phonon rotational bands in odd-$A$ nuclei have been known. Furthermore, two-phonon states, even the band head, have been observed in a very limited number of nuclides not only of odd-$A$ but even-even. Among them, that in $^{105}$Mo is unique in that Coriolis effects are expected to be stronger than in $^{103}$Nb and $^{105}$Nb on which theoretical studies were reported. Then the purpose of the present work is to study $^{105}$Mo paying attention to rotational character change of the one-phonon and two-phonon bands. The particle-vibration coupling model based on the cranking model and the random-phase approximation is used to calculate the vibrational states in rotating odd-$A$ nuclei. The present model reproduces the observed yrast zero-phonon and one-phonon bands well. Emerging general features of the rotational character change from low spin to high spin are elucidated. In particular, the reason why the one-phonon band does not exhibit signature splitting is clarified. The calculated collectivity of the two-phonon states, however, is located higher than observed.
The $^9$C nucleus and related capture reaction, ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$, have been intensively studied with an astrophysical interest. Due to the weakly-bound nature of $^9$C, its structure is likely to be described as the three-body ($ {^7mathrm{Be}}+p+p$). Its continuum structure is also important to describe reaction processes of $^9$C, with which the reaction rate of the ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$ process have been extracted indirectly. We perform three-body calculations on $^9$C and discuss properties of its ground and low-lying states via breakup reactions. We employ the three-body model of $^9$C using the Gaussian-expansion method combined with the complex-scaling method. This model is implemented in the four-body version of the continuum-discretized coupled-channels method, by which breakup reactions of $^9$C are studied. The intrinsic spin of $^7$Be is disregarded. By tuning a three-body interaction in the Hamiltonian of $^9$C, we obtain the low-lying $2^+$ state with the resonant energy 0.781 MeV and the decay width 0.137 MeV, which is consistent with the available experimental information and a relatively high-lying second $2^+$ wider resonant state. Our calculation predicts also sole $0^+$ and three $1^-$ resonant states. We discuss the role of these resonances in the elastic breakup cross section of $^9$C on $^{208}$Pb at 65 and 160 MeV/A. The low-lying 2$^+$ state is probed as a sharp peak of the breakup cross section, while the 1$^-$ states enhance the cross section around 3 MeV. Our calculations will further support the future and ongoing experimental campaigns for extracting astrophysical information and evaluating the two-proton removal cross-sections.
115 - J.P. Mitchell 2010
Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time Dependent Continuum Shell Model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.
The properties of the low-lying 2^+ states in the even-even nuclei around 132Sn are studied within the quasiparticle random phase approximation. Starting from a Skyrme interaction in the particle-hole channel and a density-dependent zero-range intera ction in the particle-particle channel, we use the finite rank separable approach in our investigation. It is found that the fourth 2^+ state in 132Te could be a good candidate for a mixed-symmetry state.
The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا