ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of low-lying quadrupole states in nuclei near 132Sn

126   0   0.0 ( 0 )
 نشر من قبل Alexey Severyukhin
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of the low-lying 2^+ states in the even-even nuclei around 132Sn are studied within the quasiparticle random phase approximation. Starting from a Skyrme interaction in the particle-hole channel and a density-dependent zero-range interaction in the particle-particle channel, we use the finite rank separable approach in our investigation. It is found that the fourth 2^+ state in 132Te could be a good candidate for a mixed-symmetry state.



قيم البحث

اقرأ أيضاً

We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the bare potential is renormalize d by constructing a smooth low-momentum potential, V-low-k, that is used directly as input for the calculation of the effective interaction. In this paper we focus attention on the nuclei 134Sn and 135Sb which, with an N/Z ratio of 1.68 and 1.65, respectively, are at present the most exotic nuclei beyond 132Sn for which information exists on excited states. Comparison shows that the calculated results for both nuclei are in very good agreement with the experimental data. We present our predictions of the hitherto unknown spectrum of 136Sn.
The lifetimes of the low-lying excited states $2^+$ and $4^+$ have been directly measured in the neutron-deficient $^{106,108}$Sn isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted $gamma$ rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the $B(E2; 2_1^+ to 0_{g.s.}^+)$ values and it describes well the experimental pattern for $^{104-114}$Sn; the $B(E2; 4_1^+ to 2_1^+)$ values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in $^{108}$Sn. This result provides insight in the hitherto unexplained $B(E2; 4_1^+ to 2_1^+)/B(E2; 2_1^+ to 0_{g.s.}^+) < 1$ anomaly.
A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest $(I=1/2,J^P = 1/2^pm)$ baryon isospin-doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically-active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest $(1/2,1/2^+)$ doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely $S$-wave in nature; and the first excited state in this $1/2^+$ channel has the appearance of a radial excitation of the ground state. The two lightest $(1/2,1/2^-)$ doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly $P$-wave in nature, but possess measurable $S$-wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest $(1/2,1/2^pm)$ doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
The 0+ ground state of the 10He nucleus produced in the 3H(8He,p)10He reaction was found at about $2.1pm0.2$ MeV (Gamma ~ 2 MeV) above the three-body 8He+n+n breakup threshold. Angular correlations observed for 10He decay products show prominent inte rference patterns allowing to draw conclusions about the structure of low-energy excited states. We interpret the observed correlations as a coherent superposition of the broad 1- state having a maximum at energy 4-6 MeV and the 2+ state above 6 MeV, setting both on top of the 0+ state tail. This anomalous level ordering indicates that the breakdown of the N=8 shell known in 12Be thus extends also to the 10He system.
103 - J.P. Mitchell 2010
Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time Dependent Continuum Shell Model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا