ﻻ يوجد ملخص باللغة العربية
We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to $3times 10^7$ organisms and $10^5$ generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.
The many-body physics at quantum phase transitions shows a subtle interplay between quantum and thermal fluctuations, emerging in the low-temperature limit. In this review, we first give a pedagogical introduction to the equilibrium behavior of syste
The Topological Hypothesis states that phase transitions should be related to changes in the topology of configuration space. The necessity of such changes has already been demonstrated. We characterize exactly the topology of the configuration space
We analyze a nonlinear $q$-voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. The size of the lobby $q$ (i.e., the pressure group) is a crucial parameter that changes the behavior of the system.
We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact dia
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top