ﻻ يوجد ملخص باللغة العربية
Noncentral collision of heavy ions can generate large magnetic field in its neighbourhood. We describe a method to calculate the effect of this field on the dilepton emission rate from the colliding region, when it reaches thermal equilibrium. It is calculated in the real time method of thermal field theory. We find that the rate is affected significantly only for lower momenta of dileptons.
A model of cut-off momentum distribution functions in a Quark Gluon Plasma with finite baryon chemical potential is discussed. This produces a quark gluon plasma signature in Ultra Relativistic Nuclear Collisions with a specific structure of the dile
We have computed the hard dilepton production rate from a weakly magnetized deconfined QCD medium within one-loop photon self-energy by considering one hard and one thermomagnetic resummed quark propagator in the loop. In the presence of the magnetic
The ionization efficiency of helicon plasma discharge is explored by changing the low axial magnetic field gradients near the helicon antenna. The highest plasma density is found for a most possible diverging field near the antenna by keeping the oth
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calcu
Vacuum to nuclear matter phase transition has been studied in presence of constant external background magnetic field with the mean field approximation in Walecka model. The anomalous nucleon magnetic moment has been taken into account using the modi