ﻻ يوجد ملخص باللغة العربية
Vacuum to nuclear matter phase transition has been studied in presence of constant external background magnetic field with the mean field approximation in Walecka model. The anomalous nucleon magnetic moment has been taken into account using the modified weak field expansion of the fermion propagator having non-trivial correction terms for charged as well as for neutral particles. The effect of nucleon magnetic moment is found to favour the magnetic catalysis effect at zero temperature and zero baryon density. However, extending the study to finite temperatures, it is observed that the anomalous nuclear magnetic moment plays a crucial role in characterizing the qualitative behaviour of vacuum to nuclear matter phase transition even in case of the weak external magnetic fields . The critical temperature corresponding to the vacuum to nuclear medium phase transition is observed to decrease with the external magnetic field which can be identified as the inverse magnetic catalysis in Walecka model whereas the opposite behaviour is obtained in case of vanishing magnetic moment indicating magnetic catalysis.
We consider the evolution of critical temperature both for the formation of a pion condensate as well as for the chiral transition, from the perspective of the linear sigma model, in the background of a magnetic field. We developed the discussion for
We compute the critical temperature for the chiral transition in the background of a magnetic field in the linear sigma model, including the quark contribution and the thermo-magnetic effects induced on the coupling constants at one loop level. We sh
We present a five-dimensional fully anisotropic holographic model for heavy quarks supported by Einstein-dilaton-three-Maxwell action; one of the Maxwell fields is related to an external magnetic field. Influence of the external magnetic field on the
We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magneti
We study dynamical chiral symmetry breaking for quarks in the fundamental representation of $SU(N_c)$ for $N_f$ number of light quark flavors. We also investigate the phase diagram of quantum chromodynamics at finite temperature $T$ and/or in the pre