ﻻ يوجد ملخص باللغة العربية
We study spin transport in a fully hBN encapsulated monolayer-graphene van der Waals (vdW) heterostructure, at room temperature. A top-layer of bilayer-hBN is used as a tunnel barrier for spin-injection and detection in graphene with ferromagnetic cobalt electrodes. We report surprisingly large and bias induced (differential) spin-injection (detection) polarizations up to 50% (135%) at a positive voltage bias of +0.6 V, as well as sign inverted polarizations up to -70% (-60%) at a reverse bias of -0.4 V. This demonstrates the potential of bilayer-hBN tunnel barriers for practical graphene spintronics applications. With such enhanced spin-injection and detection polarizations, we report a record two-terminal (inverted) spin-valve signals up to 800 $Omega$ with a magnetoresistance ratio of 2.7%, and we achieve spin accumulations up to 4.1 meV. We propose how these numbers can be increased further, for future technologically relevant graphene based spintronic devices.
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN subst
The specific rotational alignment of two-dimensional lattices results in a moire superlattice with a larger period than the original lattices and allows one to engineer the electronic band structure of such materials. So far, transport signatures of
Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subt
We present a theoretical study of electronic and thermal transport in polycrystalline heterostructures combining graphene (G) and hexagonal boron nitride (hBN) grains of varying size and distribution. By increasing the hBN grain density from a few pe
Second-order nonlinear optical response allows to detect different properties of the system associated with the inversion symmetry breaking. Here, we use a second harmonic generation effect to investigate the alignment of a graphene/hexagonal Boron N