ﻻ يوجد ملخص باللغة العربية
We study the two-body scattering problem in the zero-range approximation with a sinusoidally driven scattering length and calculate the relation between the mean value and amplitude of the drive for which the effective scattering amplitude is resonantly enhanced. In this manner we arrive at a family of curves along which the effective scattering length diverges but the nature of the corresponding Floquet-induced resonance changes from narrow to wide. Remarkably, on these curves the driving does not induce heating. In order to study the effect of these resonances on the three-body problem we consider one light and two heavy particles with driven heavy-light interaction in the Born-Oppenheimer approximation and find that the Floquet driving can be used to tune the three-body and inelasticity parameters.
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energ
We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond th
When the binding energy of a two-body system goes to zero the two-body system shows a continuous scaling invariance governed by the large value of the scattering length. In the case of three identical bosons, the three-body system in the same limit s
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,