ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cloudlet Bazaar Dynamic Markets for the Small Cloud

45   0   0.0 ( 0 )
 نشر من قبل Sung-Han Lin
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent emergence of the small cloud (SC), both in concept and in practice, has been driven mainly by issues related to service cost and complexity of commercial cloud providers (e.g., Amazon) employing massive data centers. However, the resource inelasticity problem faced by the SCs due to their relatively scarce resources (e.g., virtual machines) might lead to a potential degradation of customer QoS and loss of revenue. A proposed solution to this problem recommends the sharing of resources between competing SCs to alleviate the resource inelasticity issues that might arise [1]. Based on this idea, a recent effort ([2]) proposed SC-Share, a performance-driven static market model for competitive small cloud environments that results in an efficient market equilibrium jointly optimizing customer QoS satisfaction and SC revenue generation. However, an important non-obvious question still remains to be answered, without which SC sharing markets may not be guaranteed to sustain in the long-run - is it still possible to achieve a stable market efficient state when the supply of SC resources is dynamic in nature and there is a variation of customer demand over time? In this paper, we address the problem of efficient market design for SC resource sharing in dynamic environments. We answer our previous question in the affirmative through the use of Arrow and Hurwiczs disequilibrium process [3], [4] in economics, and the gradient play technique in game theory that allows us to iteratively converge upon efficient and stable market equilibria



قيم البحث

اقرأ أيضاً

Small-scale clouds (SCs) often suffer from resource under-provisioning during peak demand, leading to inability to satisfy service level agreements (SLAs) and consequent loss of customers. One approach to address this problem is for a set of autonomo us SCs to share resources among themselves in a cost-induced cooperative fashion, thereby increasing their individual capacities (when needed) without having to significantly invest in more resources. A central problem (in this context) is how to properly share resources (for a price) to achieve profitable service while maintaining customer SLAs. To address this problem, in this paper, we propose the SC-Share framework that utilizes two interacting models: (i) a stochastic performance model that estimates the achieved performance characteristics under given SLA requirements, and (ii) a market-based game-theoretic model that (as shown empirically) converges to efficient resource sharing decisions at market equilibrium. Our results include extensive evaluations that illustrate the utility of the proposed framework.
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner s goal is to maximize the total value over a finite time horizon. We study matching algorithms that perform well over any sequence of arrivals when there is no a priori information about the match values or arrival times. Our main contribution is a 1/4-competitive algorithm. The algorithm randomly selects a subset of agents who will wait until right before their departure to get matched, and maintains a maximum-weight matching with respect to the other agents. The primal-dual analysis of the algorithm hinges on a careful comparison between the initial dual value associated with an agent when it first arrives, and the final value after d time steps. It is also shown that no algorithm is 1/2-competitive. We extend the model to the case in which departure times are drawn i.i.d from a distribution with non-decreasing hazard rate, and establish a 1/8-competitive algorithm in this setting. Finally we show on real-world data that a modified version of our algorithm performs well in practice.
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are form ed either bilaterally or indirectly through chains. We adopt an asymptotic approach and compute tight bounds on the limit of waiting time of agents under myopic policies that differ in matching technology and prioritization. We find that the market composition is a key factor in the desired matching technology and prioritization level. When hard-to-match agents arrive less frequently than easy-to-match ones (i) bilateral matching is almost as efficient as chains (waiting times scale similarly under both, though chains always outperform bilateral matching by a constant factor), and (ii) assigning priorities to hard-to-match agents improves their waiting times. When hard-to-match agents arrive more frequently, chains are much more efficient than bilateral matching and prioritization has no impact. We further conduct comparative statics on arrival rates. Somewhat surprisingly, we find that in a heterogeneous market and under bilateral matching, increasing arrival rate has a non-monotone effect on waiting times, due to the fact that, under some market compositions, there is an adverse effect of competition. Our comparative statics shed light on the impact of merging markets and attracting altruistic agents (that initiate chains) or easy-to-match agents. This work uncovers fundamental differences between heterogeneous and homogeneous dynamic markets, and potentially helps policy makers to generate insights on the operations of matching markets such as kidney exchange programs.
112 - Jinhwan Choi , Yu Gu , Jinoh Kim 2019
Caches are an important component of modern computing systems given their significant impact on performance. In particular, caches play a key role in the cloud due to the nature of large-scale, data-intensive processing. One of the key challenges for the cloud providers is how to share the caching capacity among tenants, under the circumstance that each often requires a different degree of quality of service (QoS) with respect to data access performance. The invariant is that the individual tenants QoS requirements should be satisfied while the cache usage is optimized in a system-wide manner. In this paper, we introduce a learning-based approach for dynamic cache management in a cloud, which is based on the estimation of data access pattern of a tenant and the prediction of cache performance for the access pattern in question. We consider a variety of probability distributions to estimate the data access pattern, and examine a set of learning-based regression techniques to predict the cache hit rate for the access pattern. The predicted cache hit rate is then used to make a decision whether reallocating cache space is needed to meet the QoS requirement for the tenant. Our experimental results with an extensive set of synthetic traces and the YCSB benchmark show that the proposed method consistently optimizes the cache space while satisfying the QoS requirement.
122 - Miklos Borsi 2020
Modern financial market dynamics warrant detailed analysis due to their significant impact on the world. This, however, often proves intractable; massive numbers of agents, strategies and their change over time in reaction to each other leads to diff iculties in both theoretical and simulational approaches. Notable work has been done on strategy dominance in stock markets with respect to the ratios of agents with certain strategies. Perfect knowledge of the strategies employed could then put an individual agent at a consistent trading advantage. This research reports the effects of imperfect oracles on the system - dispensing noisy information about strategies - information which would normally be hidden from market participants. The effect and achievable profits of a singular trader with access to an oracle were tested exhaustively with previously unexplored factors such as changing order schedules. Additionally, the effect of noise on strategic information was traced through its effect on trader efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا