ﻻ يوجد ملخص باللغة العربية
The recent emergence of the small cloud (SC), both in concept and in practice, has been driven mainly by issues related to service cost and complexity of commercial cloud providers (e.g., Amazon) employing massive data centers. However, the resource inelasticity problem faced by the SCs due to their relatively scarce resources (e.g., virtual machines) might lead to a potential degradation of customer QoS and loss of revenue. A proposed solution to this problem recommends the sharing of resources between competing SCs to alleviate the resource inelasticity issues that might arise [1]. Based on this idea, a recent effort ([2]) proposed SC-Share, a performance-driven static market model for competitive small cloud environments that results in an efficient market equilibrium jointly optimizing customer QoS satisfaction and SC revenue generation. However, an important non-obvious question still remains to be answered, without which SC sharing markets may not be guaranteed to sustain in the long-run - is it still possible to achieve a stable market efficient state when the supply of SC resources is dynamic in nature and there is a variation of customer demand over time? In this paper, we address the problem of efficient market design for SC resource sharing in dynamic environments. We answer our previous question in the affirmative through the use of Arrow and Hurwiczs disequilibrium process [3], [4] in economics, and the gradient play technique in game theory that allows us to iteratively converge upon efficient and stable market equilibria
Small-scale clouds (SCs) often suffer from resource under-provisioning during peak demand, leading to inability to satisfy service level agreements (SLAs) and consequent loss of customers. One approach to address this problem is for a set of autonomo
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are form
Caches are an important component of modern computing systems given their significant impact on performance. In particular, caches play a key role in the cloud due to the nature of large-scale, data-intensive processing. One of the key challenges for
Modern financial market dynamics warrant detailed analysis due to their significant impact on the world. This, however, often proves intractable; massive numbers of agents, strategies and their change over time in reaction to each other leads to diff