ﻻ يوجد ملخص باللغة العربية
Modern financial market dynamics warrant detailed analysis due to their significant impact on the world. This, however, often proves intractable; massive numbers of agents, strategies and their change over time in reaction to each other leads to difficulties in both theoretical and simulational approaches. Notable work has been done on strategy dominance in stock markets with respect to the ratios of agents with certain strategies. Perfect knowledge of the strategies employed could then put an individual agent at a consistent trading advantage. This research reports the effects of imperfect oracles on the system - dispensing noisy information about strategies - information which would normally be hidden from market participants. The effect and achievable profits of a singular trader with access to an oracle were tested exhaustively with previously unexplored factors such as changing order schedules. Additionally, the effect of noise on strategic information was traced through its effect on trader efficiency.
The societys insatiable appetites for personal data are driving the emergency of data markets, allowing data consumers to launch customized queries over the datasets collected by a data broker from data owners. In this paper, we study how the data br
Strategic suppression of grades, as well as early offers and contracts, are well-known phenomena in the matching process where graduating students apply to jobs or further education. In this paper, we consider a game theoretic model of these phenomen
In this study, we attempted to determine how eigenvalues change, according to random matrix theory (RMT), in stock market data as the number of stocks comprising the correlation matrix changes. Specifically, we tested for changes in the eigenvalue pr
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
Transmission of disease, spread of information and rumors, adoption of new products, and many other network phenomena can be fruitfully modeled as cascading processes, where actions chosen by nodes influence the subsequent behavior of neighbors in th