ﻻ يوجد ملخص باللغة العربية
Recent observations have revealed massive galactic molecular outflows that may have physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive galactic outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in-situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict that it may contribute substantially to the global star formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report new spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star formation rate in the outflow is larger than 15 Msun/yr. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
We investigate the triggering of star formation in clouds that form in Galactic scale flows as the ISM passes through spiral shocks. We use the Lagrangian nature of SPH simulations to trace how the star forming gas is gathered into self-gravitating c
In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mp
The slope of the star formation rate/stellar mass relation (the SFR Main Sequence; ${rm SFR}-M_*$) is not quite unity: specific star formation rates $({rm SFR}/M_*)$ are weakly-but-significantly anti-correlated with $M_*$. Here we demonstrate that th
Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation
We present comprehensive characterization of the Galactic open cluster M 36. Some two hundred member candidates, with an estimated contamination rate of $sim$8%, have been identified on the basis of proper motion and parallax measured by the $Gaia$ D