ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in Galactic flows

95   0   0.0 ( 0 )
 نشر من قبل Romas Smilgys
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the triggering of star formation in clouds that form in Galactic scale flows as the ISM passes through spiral shocks. We use the Lagrangian nature of SPH simulations to trace how the star forming gas is gathered into self-gravitating cores that collapse to form stars. Large scale flows that arise due to Galactic dynamics create shocks of order 30 km/s that compress the gas and form dense clouds $(n> $several $times 10^2$ cm$^{-3}$) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of $n>10^3$ cm$^{-3}$ which occur on size scales of $approx 1$ pc for low-mass star forming regions ($M<100 M_{odot}$), and up to sizes approaching 10 pc for higher-mass regions ($M>10^3 M_{odot}$). Star formation in the 250 pc region lasts throughout the 5 Myr timescale of the simulation with a star formation rate of $approx 10^{-1} M_{odot}$ yr$^{-1}$ kpc$^{-2}$. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 % at our sink accretion radius to values of $< 10^{-3}$ at low densities.



قيم البحث

اقرأ أيضاً

We present comprehensive characterization of the Galactic open cluster M 36. Some two hundred member candidates, with an estimated contamination rate of $sim$8%, have been identified on the basis of proper motion and parallax measured by the $Gaia$ D R2. The cluster has a proper motion grouping around ($mu_{alpha} cosdelta = -$0.15 $pm$ 0.01 mas yr$^{-1}$, and $mu_{delta} = -$3.35 $pm$ 0.02 mas yr$^{-1}$), distinctly separated from the field population. Most member candidates have parallax values 0.7$-$0.9 mas, with a median value of 0.82 $pm$ 0.07 mas (distance $sim$1.20 $pm$ 0.13 kpc). The angular diameter of 27$$ $pm$ $0farcm4$ determined from the radial density profile then corresponds to a linear extent of 9.42 $pm$ 0.14 pc. With an estimated age of $sim$15 Myr, M 36 is free of nebulosity. To the south-west of the cluster, we discover a highly obscured ($A_{V}$ up to $sim$23 mag), compact ($sim$ $1farcm9 times 1farcm2$) dense cloud, within which three young stellar objects in their infancy (ages $lesssim$ 0.2 Myr) are identified. The molecular gas, 3.6 pc in extent, contains a total mass of (2$-$3)$times$10$^{2}$ M$_{odot}$, and has a uniform velocity continuity across the cloud, with a velocity range of $-$20 to $-$22 km s$^{-1}$, consistent with the radial velocities of known star members. In addition, the cloud has a derived kinematic distance marginally in agreement with that of the star cluster. If physical association between M 36 and the young stellar population can be unambiguously established, this manifests a convincing example of prolonged star formation activity spanning up to tens of Myrs in molecular clouds.
135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is d ifficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.
We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84-00.81, which is located in one curved filamentary cloud in the vicinity of an extended HII region Sh2-152 and SNR G109.1- 1.0. PGCC G108.84-00.81 is mainly composed of two clumps, G108-N and G108-S. In the 850 micron dust continuum emission map, G108-N is shown as one component while G108-S is fragmented into four components. There is no infrared source associated with G108-N while there are two infrared sources (IRS 1 and IRS 2) associated with G108-S. The total mass of G108-N is larger than the jeans mass, suggesting that G108-N is gravitationally unstable and a potential place for a future star formation. The clump properties of G108-N and G108-S such as the gas temperature and the column density, are not distinctly different. However, G108-S is slightly more evolved than G108-N, in the consideration of the CO depletion factor, molecular abundances, and association with infrared sources. G108-S seems to be affected by the compression from Sh2-152, while G108-N is relatively protected from the external effect
Recent observations have revealed massive galactic molecular outflows that may have physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive galactic outflows may ignite star formation w ithin the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in-situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict that it may contribute substantially to the global star formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report new spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star formation rate in the outflow is larger than 15 Msun/yr. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا