ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bag-of-Words Equivalent Recurrent Neural Network for Action Recognition

428   0   0.0 ( 0 )
 نشر من قبل Alexander Richard
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Alexander Richard




اسأل ChatGPT حول البحث

The traditional bag-of-words approach has found a wide range of applications in computer vision. The standard pipeline consists of a generation of a visual vocabulary, a quantization of the features into histograms of visual words, and a classification step for which usually a support vector machine in combination with a non-linear kernel is used. Given large amounts of data, however, the model suffers from a lack of discriminative power. This applies particularly for action recognition, where the vast amount of video features needs to be subsampled for unsupervised visual vocabulary generation. Moreover, the kernel computation can be very expensive on large datasets. In this work, we propose a recurrent neural network that is equivalent to the traditional bag-of-words approach but enables for the application of discriminative training. The model further allows to incorporate the kernel computation into the neural network directly, solving the complexity issue and allowing to represent the complete classification system within a single network. We evaluate our method on four recent action recognition benchmarks and show that the conventional model as well as sparse coding methods are outperformed.



قيم البحث

اقرأ أيضاً

Traditional Bag-of-visual Words (BoWs) model is commonly generated with many steps including local feature extraction, codebook generation, and feature quantization, etc. Those steps are relatively independent with each other and are hard to be joint ly optimized. Moreover, the dependency on hand-crafted local feature makes BoWs model not effective in conveying high-level semantics. These issues largely hinder the performance of BoWs model in large-scale image applications. To conquer these issues, we propose an End-to-End BoWs (E$^2$BoWs) model based on Deep Convolutional Neural Network (DCNN). Our model takes an image as input, then identifies and separates the semantic objects in it, and finally outputs the visual words with high semantic discriminative power. Specifically, our model firstly generates Semantic Feature Maps (SFMs) corresponding to different object categories through convolutional layers, then introduces Bag-of-Words Layers (BoWL) to generate visual words for each individual feature map. We also introduce a novel learning algorithm to reinforce the sparsity of the generated E$^2$BoWs model, which further ensures the time and memory efficiency. We evaluate the proposed E$^2$BoWs model on several image search datasets including CIFAR-10, CIFAR-100, MIRFLICKR-25K and NUS-WIDE. Experimental results show that our method achieves promising accuracy and efficiency compared with recent deep learning based retrieval works.
Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently pop ular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a Bag of Deep Features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state-of-the-art.
This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational aut o-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.
By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-of-the-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and t emporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is incapable of finding the salient portions of an action, say, the frames that are the most discriminative to identify the action. To address these problems, a textbf{j}oint textbf{n}etwork based textbf{a}ttention (JNA) is proposed in this study. We find that the fully-connected fusion, branch selection and spatial attention mechanism are totally infeasible for action recognition. Thus in our joint network, the spatial and temporal branches share some information during the training stage. We also introduce an attention mechanism on the temporal domain to capture the long-term dependence meanwhile finding the salient portions. Extensive experiments are conducted on two benchmark datasets, UCF101 and HMDB51. Experimental results show that our method can improve the action recognition performance significantly and achieves the state-of-the-art results on both datasets.
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-d efined graph and fix it through the entire network, which can loss implicit joint correlations. Besides, the mainstream spectral GCN is approximated by one-order hop, thus higher-order connections are not well involved. Therefore, huge efforts are required to explore a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for skeleton-based action recognition. Specifically, we enrich the search space by providing multiple dynamic graph modules after fully exploring the spatial-temporal correlations between nodes. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a sampling- and memory-efficient evolution strategy is proposed to search an optimal architecture for this task. The resulted architecture proves the effectiveness of the higher-order approximation and the dynamic graph modeling mechanism with temporal interactions, which is barely discussed before. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scaled datasets and the results show that our model gets the state-of-the-art results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا