ﻻ يوجد ملخص باللغة العربية
By introducing a superconducting gap in Weyl- or Dirac semi-metals, the superconducting state inherits the non-trivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena such as non-zero-momentum pairing due to their chiral node structure, or zero- energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and moreover practical applications in phase coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow such experiments on non-superconducting Weyl semi-metals. Here we show a new route to reliably fabricating superconducting microstructures from the non-superconducting Weyl semi-metal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc~3.5K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk due to the proximity effect. Simple ion irradiation may thus serve as a powerful tool to fabricating topological quantum devices from mono-arsenides, even on an industrial scale.
Optical control of structural and electronic properties of Weyl semimetals allows development of switchable and dissipationless topological devices at the ultrafast scale. An unexpected orbitial-selective photoexcitation in type-II Weyl material WTe2
We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, we identify the existence of the Fer
Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue physicists due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electroni
Due to the non-trivial topological band structure in type-II Weyl semimetal Tungsten ditelluride (WTe2), unconventional properties may emerge in its superconducting phase. While realizing intrinsic superconductivity has been challenging in the type-I
By combining first-principles simulations including an on-site Coulomb repulsion term and Boltzmann theory, we demonstrate how the interplay of quantum confinement and epitaxial strain allows to selectively design $n$- and $p$-type thermoelectric res