ﻻ يوجد ملخص باللغة العربية
Due to the non-trivial topological band structure in type-II Weyl semimetal Tungsten ditelluride (WTe2), unconventional properties may emerge in its superconducting phase. While realizing intrinsic superconductivity has been challenging in the type-II Weyl semimetal WTe2, proximity effect may open an avenue for the realization of superconductivity. Here, we report the observation of proximity-induced superconductivity with a long coherence length along c axis in WTe2 thin flakes based on a WTe2/NbSe2 van der Waals heterostructure. Interestingly, we also observe anomalous oscillations of the differential resistance during the transition from superconducting to normal state. Theoretical calculations show excellent agreement with experimental results, revealing that such a sub-gap anomaly is the intrinsic property of WTe2 in superconducting state induced by the proximity effect. Our findings enrich the understanding of superconducting phase of type-II Weyl semimetals, and pave the way for their future applications in topological quantum computing.
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4
We determine the band structure and spin texture of WTe2 by spin- and angle-resolved photoemission spectroscopy (SARPES). With the support of first-principles calculations, we reveal the existence of spin polarization of both the Fermi arc surface st
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties b
A monopole harmonic superconductor is a novel topological phase of matter with topologically protected gap nodes that result from the non-trivial Berry phase structure of Cooper pairs. In this work we propose to realize a monopole superconductor by t
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it