ترغب بنشر مسار تعليمي؟ اضغط هنا

A Liouville theorem for the Euler equations in the plane

103   0   0.0 ( 0 )
 نشر من قبل Francois Hamel
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Francois Hamel




اسأل ChatGPT حول البحث

This paper is concerned with qualitative properties of bounded steady flows of an ideal incompressible fluid with no stagnation point in the two-dimensional plane R^2. We show that any such flow is a shear flow, that is, it is parallel to some constant vector. The proof of this Liouville-type result is firstly based on the study of the geometric properties of the level curves of the stream function and secondly on the derivation of some estimates on the at most logarithmic growth of the argument of the flow. These estimates lead to the conclusion that the streamlines of the flow are all parallel lines.



قيم البحث

اقرأ أيضاً

We show that non-uniqueness of the Leray-Hopf solutions of the Navier--Stokes equation on the hyperbolic plane observed in arXiv:1006.2819 is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on the hyperbolic spac es of higher dimension. We also describe the corresponding general Hamiltonian setting of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
We prove that the Dirichlet problem for the Lane-Emden equation in a half-space has no positive solution which is monotone in the normal direction. As a consequence, this problem does not admit any positive classical solution which is bounded on fini te strips. This question has a long history and our result solves a long-standing open problem. Such a nonexistence result was previously available only for bounded solutions, or under a restriction on the power in the nonlinearity. The result extends to general convex nonlinearities.
142 - Wendong Wang , Yuzhao Wang 2018
This note is devoted to investigating Liouville type properties of the two dimensional stationary incompressible Magnetohydrodynamics equations. More precisely, under smallness conditions only on the magnetic field, we show that there are no non-triv ial solutions to MHD equations either the Dirichlet integral or some $L^p$ norm of the velocity-magnetic fields are finite. In particular, these results generalize the corresponding Liouville type properties for the 2D Navier-Stokes equations, such as Gilbarg-Weinberger cite{GW1978} and Koch-Nadirashvili-Seregin-Sverak cite{KNSS}, to the MHD setting.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
141 - Wenxiong Chen , Leyun Wu 2021
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition $u to 0$ at infinity with respect to the spacial variables to a polynomial growth on $u$ by constructing auxiliary functions.Then we derive monotonicity for the solutions in a half space $mathbb{R}_+^n times mathbb{R}$ and obtain some new connections between the nonexistence of solutions in a half space $mathbb{R}_+^n times mathbb{R}$ and in the whole space $mathbb{R}^{n-1} times mathbb{R}$ and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the non-locality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of non-local parabolic problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا