ﻻ يوجد ملخص باللغة العربية
This note is devoted to investigating Liouville type properties of the two dimensional stationary incompressible Magnetohydrodynamics equations. More precisely, under smallness conditions only on the magnetic field, we show that there are no non-trivial solutions to MHD equations either the Dirichlet integral or some $L^p$ norm of the velocity-magnetic fields are finite. In particular, these results generalize the corresponding Liouville type properties for the 2D Navier-Stokes equations, such as Gilbarg-Weinberger cite{GW1978} and Koch-Nadirashvili-Seregin-Sverak cite{KNSS}, to the MHD setting.
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles
We classify stable and finite Morse index solutions to general semilinear elliptic equations posed in Euclidean space of dimension at most 10, or in some unbounded domains.
In this paper we study Liouville properties of smooth steady axially symmetric solutions of the Navier-Stokes equations. First, we provide another version of the Liouville theorem of cite{kpr15} in the case of zero swirl, where we replaced the Dirich
In this note, we study Liouville type theorem for conformal Gaussian curvature equation (also called the mean field equation) $$ -Delta u=K(x)e^u, in R^2 $$ where $K(x)$ is a smooth function on $R^2$. When $K(x)=K(x_1)$ is a sign-changing smooth func