ﻻ يوجد ملخص باللغة العربية
Recent observations of galactic cosmic rays (CR) in the 1-500 GeV energy range have revealed striking deviations from what deemed standard. The anomalies cut across hadronic and leptonic CRs. I discuss findings that challenge physical mechanisms long held responsible for the CR production in galactic supernova remnants (SNR). I also consider some new physics of particle acceleration in SNR shocks that is not part of conventional models but may explain the anomalies. However, a possible 20-30% excess remains unaccounted for in the $e^{+}/e^{+}$ ratio over the range of a few 100 GeV. If not explained by future models, it suggests an additional source of positrons such as a dark matter decay/annihilation or pulsar contribution. Earlier efforts to explain both the $e^{+}/e^{-}$ and $p$/He anomalies with the standard models by adjusting the SNR environmental parameters and multiple sources are critically assessed.
Direct techniques for cosmic ray observations have reached an unprecedented level of precision, unveiling fine-details of the energy spectra. I will introduce the evidence for new spectral features which has been accumulated by new experiments over t
We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a y
Recent results by space borne experiments took cosmic ray data to a precision level. These new results are able to challenge the conventional scenario for cosmic ray acceleration and propagation in the Milky Way. In these contributions, written for t
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to
From the analysis of the flux of high energy particles, $E>3cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${bar q}(E)propto E^{-2.7}$, with the same index of $2.7$ that