ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral features in galactic cosmic rays

42   0   0.0 ( 0 )
 نشر من قبل Manuela Vecchi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Manuela Vecchi




اسأل ChatGPT حول البحث

Recent results by space borne experiments took cosmic ray data to a precision level. These new results are able to challenge the conventional scenario for cosmic ray acceleration and propagation in the Milky Way. In these contributions, written for the XVII Vulcano Workshop, we will give an overview of the latest results of the cosmic ray fluxes, and some possible interpretations will be discussed. These measurements have a common feature, namely the presence of unexpected and still not yet fully understood spectral features.



قيم البحث

اقرأ أيضاً

134 - Pasquale Blasi 2012
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
414 - Ya. N. Istomin 2014
From the analysis of the flux of high energy particles, $E>3cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${bar q}(E)propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called knee, $E<3cdot 10^{15}eV$. However, the average power of extragalactic sources, which is of ${cal E}simeq 10^{43}erg ,s^{-1}$, at least two orders exceeds the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as $N_gsimeq 1 Mpc^{-3}$. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ${cal E}simeq 10^{45} - 10^{46} erg , s^{-1}$, we estimate the density of extragalactic sources of cosmic rays as $N_gsimeq 10^{-2}-10^{-3}, Mpc^{-3}$. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (knee), is explained by fast escape of energetic particle, $E>3cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $Dpropto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3cdot 10^{15}eV$ agrees well with the observed one, $N(E)propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2cdot 10^{4}$ years ago.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and g amma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
The study of the transition between galactic and extragalactic cosmic rays can shed more light on the end of the Galactic cosmic rays spectrum and the beginning of the extragalactic one. Three models of transition are discussed: ankle, dip and mixed composition models. All these models describe the transition as an intersection of a steep galactic component with a flat extragalactic one. Severe bounds on these models are provided by the Standard Model of Galactic Cosmic Rays according to which the maximum acceleration energy for Iron nuclei is of the order of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. In the ankle model the transition is assumed at the ankle, a flat feature in the all particle spectrum which observationally starts at energy $E_a sim (3 - 4)times 10^{18}$ eV. This model needs a new high energy galactic component with maximum energy about two orders of magnitude above that of the Standard Model. The origin of such component is discussed. As observations are concerned there are two signatures of the transition: change of energy spectra and mass composition. In all models a heavy galactic component is changed at the transition to a lighter or proton component.
The arrival directions of Galactic cosmic rays (CRs) are highly isotropic. This is expected from the presence of turbulent magnetic fields in our Galactic environment that repeatedly scatter charged CRs during propagation. However, various CR observa tories have identified weak anisotropies of various angular sizes and with relative intensities of up to a level of 1 part in 1,000. Whereas large-scale anisotropies are generally predicted by standard diffusion models, the appearance of small-scale anisotropies down to an angular size of 10 degrees is surprising. In this review, we summarise the current experimental situation for both the large-scale and small-scale anisotropies. We address some of the issues in comparing different experimental results and remaining questions in interpreting the observed large-scale anisotropies. We then review the standard diffusive picture and its difficulty in producing the small-scale anisotropies. Having set the stage, we review the various ideas and models put forward for explaining the small-scale anisotropies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا