ﻻ يوجد ملخص باللغة العربية
A matrix is emph{simple} if it is a (0,1)-matrix and there are no repeated columns. Given a (0,1)-matrix $F$, we say a matrix $A$ has $F$ as a emph{configuration}, denoted $Fprec A$, if there is a submatrix of $A$ which is a row and column permutation of $F$. Let $|A|$ denote the number of columns of $A$. Let $mathcal{F}$ be a family of matrices. We define the extremal function $text{forb}(m, mathcal{F}) = max{|A|colon A text{ is an }m-text{rowed simple matrix and has no configuration } Finmathcal{F}}$. We consider pairs $mathcal{F}={F_1,F_2}$ such that $F_1$ and $F_2$ have no common extremal construction and derive that individually each $text{forb}(m, F_i)$ has greater asymptotic growth than $text{forb}(m, mathcal{F})$, extending research started by Anstee and Koch.
Recall that in a laminar family, any two sets are either disjoint or contained one in the other. Here, a parametrized weakening of this condition is introduced. Let us say that a set system $mathcal{F} subseteq 2^X$ is $t$-laminar if $A,B in mathcal{
Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for com
A permutation group is said to be quasiregular if every its transitive constituent is regular, and a quasiregular coherent configuration can be thought as a combinatorial analog of such a group: the transitive constituents are replaced by the homogen
In this note, we fix a graph $H$ and ask into how many vertices can each vertex of a clique of size $n$ can be split such that the resulting graph is $H$-free. Formally: A graph is an $(n,k)$-graph if its vertex sets is a pairwise disjoint union of $
Determining the maximum size of a $t$-intersecting code in $[m]^n$ was a longstanding open problem of Frankl and Furedi, solved independently by Ahlswede and Khachatrian and by Frankl and Tokushige. We extend their result to the setting of forbidden