ﻻ يوجد ملخص باللغة العربية
When the action of a reductive group on a projective variety has a suitable linearisation, Mumfords geometric invariant theory (GIT) can be used to construct and study an associated quotient variety. In this article we describe how Mumfords GIT can be extended effectively to suitable actions of linear algebraic groups which are not necessarily reductive, with the extra data of a graded linearisation for the action. Any linearisation in the traditional sense for a reductive group action induces a graded linearisation in a natural way. The classical examples of moduli spaces which can be constructed using Mumfords GIT are moduli spaces of stable curves and of (semi)stable bundles over a fixed nonsingular curve. This more general construction can be used to construct moduli spaces of unstable objects, such as unstable curves or unstable bundles (with suitable fixed discrete invariants in each case, related to their singularities or Harder--Narasimhan type).
Let $U$ be a unipotent group which is graded in the sense that it has an extension $H$ by the multiplicative group of the complex numbers such that all the weights of the adjoint action on the Lie algebra of $U$ are strictly positive. We study embedd
The aim of this paper is to show that classical geometric invariant theory (GIT) has an effective analogue for linear actions of a non-reductive algebraic group $H$ with graded unipotent radical on a projective scheme $X$. Here the linear action of $
We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We
We give an exposition and generalization of Orlovs theorem on graded Gorenstein rings. We show the theorem holds for non-negatively graded rings which are Gorenstein in an appropriate sense and whose degree zero component is an arbitrary non-commutat
Let $U$ be a graded unipotent group over the complex numbers, in the sense that it has an extension $hat{U}$ by the multiplicative group such that the action of the multiplicative group by conjugation on the Lie algebra of $U$ has all its weights str