ﻻ يوجد ملخص باللغة العربية
Let $U$ be a unipotent group which is graded in the sense that it has an extension $H$ by the multiplicative group of the complex numbers such that all the weights of the adjoint action on the Lie algebra of $U$ are strictly positive. We study embeddings of $H$ in a general linear group $G$ which possess Grosshans-like properties. More precisely, suppose $H$ acts on a projective variety $X$ and its action extends to an action of $G$ which is linear with respect to an ample line bundle on $X$. Then, provided that we are willing to twist the linearisation of the action of $H$ by a suitable (rational) character of $H$, we find that the $H$-invariants form a finitely generated algebra and hence define a projective variety $X/!/H$; moreover the natural morphism from the semistable locus in $X$ to $X/!/H$ is surjective, and semistable points in $X$ are identified in $X/!/H$ if and only if the closures of their $H$-orbits meet in the semistable locus. A similar result applies when we replace $X$ by its product with the projective line; this gives us a projective completion of a geometric quotient of a $U$-invariant open subset of $X$ by the action of the unipotent group $U$.
Let $U$ be a graded unipotent group over the complex numbers, in the sense that it has an extension $hat{U}$ by the multiplicative group such that the action of the multiplicative group by conjugation on the Lie algebra of $U$ has all its weights str
The aim of this paper is to show that classical geometric invariant theory (GIT) has an effective analogue for linear actions of a non-reductive algebraic group $H$ with graded unipotent radical on a projective scheme $X$. Here the linear action of $
We define a general notion of centrally $Gamma$-graded sets and groups and of their graded products, and prove some basic results about the corresponding categories: most importantly, they form braided monoidal categories. Here, $Gamma$ is an arbitra
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl
Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth functi