ترغب بنشر مسار تعليمي؟ اضغط هنا

ttH, ttZ and ttW measurements at LHC and top quark compositeness

129   0   0.0 ( 0 )
 نشر من قبل Francois Richard
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Francois Richard




اسأل ChatGPT حول البحث

This note is an attempt to interpret some excesses, not yet significant due to systematics, observed by ATLAS and CMS in various analyses related to the standard channels ttH, ttZ and ttW. It is argued, within a composite interpretation of top particles, that such excesses are not necessarily related to these channels themselves, although this is not excluded, but due to the underlying presence of either vector-like heavy quarks tprime,bprime or to final states as predicted in composite theories. The outcome of this discussion is that although it will not be easy to reach an exclusive interpretation, the data collected at 13 TeV may establish the origin of this effect as coming from the four top quark topology.



قيم البحث

اقرأ أيضاً

We explore the possibility that the right-handed top quark is composite. We examine the consequences that compositeness would have on $t bar{t}$ production at the Tevatron, and derive a weak constraint on the scale of compositeness of order a few hun dred GeV from the $t bar{t}$ inclusive cross section. More detailed studies of differential properties of $t bar{t}$ production could potentially improve this limit. We find that a composite top can result in an enhancement of the $t bar{t} t bar{t}$ production rate at the LHC (of as much as $10^3$ compared to the Standatd Model four top rate). We explore observables which allow us to extract the four top rate from the backgrounds, and show that the LHC can either discover or constrain top compositeness for wide ranges of parameter space.
In composite Higgs (CH) models, large mixings between the top quark and the new strongly interacting sector are required to generate its sizeable Yukawa coupling. Precise measurements involving top as well as left-handed bottom quarks therefore offer an interesting opportunity to probe such new physics scenarios. We study the impact of third-generation-quark pair production at future lepton colliders, translating prospective effective-field-theory sensitivities into the CH parameter space. Our results show that one can probe a significant fraction of the natural CH parameter space through the top portal, especially at TeV centre-of-mass energies.
We make a Monte Carlo study on compositeness of first generation quarks and leptons using the Drell-Yan distribution in the high dielectron mass region at the Tevatron and LHC energies. The current experimental lower limits on the compositeness scale , Lambda, vary from 2.5 to 6.1 TeV. In the present analysis, we assume that there will be no deviation of the dielectron mass spectrum from Standard Model prediction at center of mass energy 2 TeV (Tevatron) and 14 TeV (LHC). We then find that in the LL, RR, RL and LR chirality channels of the quark-electron currents, it is possible to extend the lower limits on Lambda (at 95% {CL}) to a range of 6 to 10 TeV for 2 fb^{-1} and 9 to 19 TeV for 30 fb^{-1} of integrated luminosity at Tevatron. At LHC, the corresponding limits extend to a range of 16 to 25 TeV for 10 fb^{-1} and 20 to 36 TeV for 100 fb^{-1} of integrated luminosity.
92 - Efe Yazgan 2020
Recent measurements of top quark properties at the LHC made with the ATLAS and CMS experiments are discussed. The presented results include top quark mass, width, top quark Yukawa coupling, forward-backward and charge asymmetries, spin correlations a nd polarization, and W boson polarization. The results are compared to the standard model predictions and limits on new physics from these measurements are also presented.
150 - Andrew Chamblin 2009
LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production from black holes at the LHC and compare it with the direct top quark cross section via parton fusion processes at next-to-next-to-leading order (NNLO). We find that the top quark production from black holes can be larger or smaller than the pQCD predictions at NNLO depending upon the Planck mass and black hole mass. Hence the observation of very high rates for massive particle production (top quarks, higgs or supersymmetry) at the LHC may be an useful signature for black hole production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا