ترغب بنشر مسار تعليمي؟ اضغط هنا

Top Quark Production from Black Holes at the CERN LHC

150   0   0.0 ( 0 )
 نشر من قبل Gouranga Nayak
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Andrew Chamblin




اسأل ChatGPT حول البحث

LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production from black holes at the LHC and compare it with the direct top quark cross section via parton fusion processes at next-to-next-to-leading order (NNLO). We find that the top quark production from black holes can be larger or smaller than the pQCD predictions at NNLO depending upon the Planck mass and black hole mass. Hence the observation of very high rates for massive particle production (top quarks, higgs or supersymmetry) at the LHC may be an useful signature for black hole production.



قيم البحث

اقرأ أيضاً

If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions dsigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that dsigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where dsigma/dp_T decreases so we suggest that the measurement of an increase in dsigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
75 - Gang Li , Xue-An Pan , Mao Song 2019
In this work, we investigate the prompt $J/psi$ production in associated with top quark pair to leading order in the nonrelativistic QCD factorization formalism at the LHC with $sqrt{s} =13$ TeV. In addition to the contribution from direct $J/psi$ pr oduction, we also include the indirect contribution from the directly produced heavier charmmonia $chi_{cJ}$ and $psi^prime$. We present the numerical results for the total and differential cross sections and find that the $sideset{^3}{^{(8)}_1}{mathop{{S}}}$ states give the dominant contributions. The prompt $tbar t J/psi$ signatures at the LHC are analyzed in the tetralepton channel $ppto (tto W^+(ell^+ u)b) (bar t to W^-(ell^- bar u)bar b) (J/psitomu^+mu^-)$ and trilepton channel $ppto (tto W(q q^prime)b) ( t to W(ell u) b) (J/psitomu^+mu^-)$, with the $J/psi$ mesons decaying into muon pair, and the top quarks decaying leptonically or hadronically. We find that $tbar t J/psi$ proudction can be potentially detected at the LHC, whose measurement is useful to test the heavy quarkonium production mechanism.
110 - Andrew Chamblin 2002
If the fundamental planck scale is near a TeV, then parton collisions with high enough center-of-mass energy should produce black holes. The production rate for such black holes at LHC has been extensively studied for the case of a proton-proton coll ision. In this paper, we extend this analysis to a lead-lead collision at LHC. We find that the cross section for small black holes which may in principle be produced in such a collision is either enhanced or suppressed, depending upon the black hole mass. For example, for black holes with a mass around 3 TeV we find that the differential black hole production cross section, dsigma/dM, in a typical lead-lead collision is up to 90 times larger than that for black holes produced in a typical proton-proton collision. We also discuss the cross-sections for `string ball production in these collisions. For string balls of mass about 1 (2) TeV, we find that the differential production cross section in a typical lead-lead collision may be enhanced by a factor up to 3300 (850) times that of a proton-proton collision at LHC.
79 - Andrew Chamblin 2004
If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the LHC. Similarly, if the scale of supersymmetry breaking is sufficiently low, then we might expect to see light supersymmetric particles in the nex t generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compared various signatures for SUSY production at LHC, and we contrasted the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct pQCD-SUSY production via parton fusion processes depending on the values of the Planck mass and blackhole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section dsigma/dp_t for SUSY production increases as a function of the p_t (up to p_t equal to about 1 TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section dsigma/dp_t decreases as p_t increases for high p_t about 1 TeV or higher. This is a feature for any particle emission from TeV scale blackhole as long as the temperature of the blackhole is very high (~ TeV). Hence measurement of increase of dsigma/dp_t with p_t for p_t up to about 1 TeV or higher for final state particles might be a useful signature for blackhole production at LHC.
143 - R. Bonciani , T. Jezo , M. Klasen 2015
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. St andard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and $Z$ total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا