ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonconservative higher-order hydrodynamic modulation instability

140   0   0.0 ( 0 )
 نشر من قبل Amin Chabchoub AC
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally triggered, when unstable energy side-bands located around the main energy peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect, these primary side-bands generate an infinite number of additional side-bands, forming a triangular side-band cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or successive side-band pair that are created are also located in the finite instability gain range around the main carrier frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental study that confirm observation of higher-order MI dynamics in water waves. Furthermore, we show that the presence of weak dissipation may counter-intuitively enhance wave focusing in the second recurrent cycle of wave amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics, solids, superfluids and plasma.



قيم البحث

اقرأ أيضاً

We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset Ps of the instability.
We report an experimental observation of an instability in gas of constant density (air) with an initial non-uniform seeding of small droplets that develops as a planar shock wave passes through the gas-droplet mix. The seeding non-uniformity is prod uced by vertical injection of a slow-moving jet of air pre-mixed with glycol droplets into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, we observe development of two counter-rotating vortices in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.
Attractive colloidal dispersions, suspensions of fine particles which aggregate and frequently form a space spanning elastic gel are ubiquitous materials in society with a wide range of applications. The colloidal networks in these materials can exis t in a mode of free settling when the network weight exceeds its compressive yield stress. An equivalent state occurs when the network is held fixed in place and used as a filter through which the suspending fluid is pumped. In either scenario, hydrodynamic instabilities leading to loss of network integrity occur. Experimental observations have shown that the loss of integrity is associated with the formation of eroded channels, so-called streamers, through which the fluid flows rapidly. However, the dynamics of growth and subsequent mechanism of collapse remain poorly understood. Here, a phenomenological model is presented that describes dynamically the radial growth of a streamer due to erosion of the network by rapid fluid back flow. The model exhibits a finite-time blowup -- the onset of catastrophic failure in the gel -- due to activated breaking of the inter-colloid bonds. Brownian dynamics simulations of hydrodynamically interacting and settling colloids in dilute gels are employed to examine the initiation and propagation of this instability, which is in good agreement with the theory. The model dynamics are also shown to accurately replicate measurements of streamer growth in two different experimental systems. The predictive capabilities and future improvements of the model are discussed and a stability-state diagram is presented providing insight into engineering strategies for avoiding settling instabilities in networks meant to have long shelf lives.
We demonstrate experimentally multi-bound-soliton solutions of the Nonlinear Schrodinger equation (NLS) in the context of surface gravity waves. In particular, the Satsuma-Yajima N-soliton solution with N=2,3,4 is investigated in detail. Such solutio ns, also known as breathers on zero background, lead to periodic self-focussing in the wave group dynamics, and the consequent generation of a steep localized carrier wave underneath the group envelope. Our experimental results are compared with predictions from the NLS for low steepness initial conditions where wave-breaking does not occur, with very good agreement. We also show the first detailed experimental study of irreversible massive spectral broadening of the water wave spectrum, which we refer to by analogy with optics as the first controlled observation of hydrodynamic supercontinuum a process which is shown to be associated with the fission of the initial multi-soliton bound state into individual fundamental solitons similar to what has been observe in optics.
Floating offshore structures often exhibit low-frequency oscillatory motions in the horizontal plane, with amplitudes in the same order as their characteristic dimensions and larger than the corresponding wave-frequency responses, making the traditio nal formulations in an inertial coordinate system inconsistent and less applicable. To address this issue, we explore an alternative formulation completely based on a non-inertial body-fixed coordinate system. Unlike the traditional seakeeping models, this formulation consistently allows for large-amplitude horizontal motions. A numerical model based on a higher-order boundary element is applied to solve the resulting boundary-value problems in the time domain. A new set of explicit time-integration methods, which do not necessitate the use of upwind schemes for spatial derivatives, are designed to deal with the convective-type free-surface conditions. To suppress the weak saw-tooth instabilities on the free surface in time marching, we also present novel low-pass filters based on optimized weighted-least-squares, which are in principle applicable for both structured and unstructured meshes. For ship seakeeping and added resistance analyses, we show that the present computational model does not need to use soft-springs for surge and sway, in contrast to the traditional models. For a spar floating offshore wind turbine (FOWT), the importance of consistently taking into account the effects of large horizontal motions is demonstrated considering the bi-chromatic incident waves. The present model is also referred to as a complete 2nd order wave-load model, as all the 2nd order wave loads, including the sum-frequency and difference-frequency components, are solved simultaneously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا