ﻻ يوجد ملخص باللغة العربية
We report an experimental observation of an instability in gas of constant density (air) with an initial non-uniform seeding of small droplets that develops as a planar shock wave passes through the gas-droplet mix. The seeding non-uniformity is produced by vertical injection of a slow-moving jet of air pre-mixed with glycol droplets into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, we observe development of two counter-rotating vortices in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.
We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large
The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally
Attractive colloidal dispersions, suspensions of fine particles which aggregate and frequently form a space spanning elastic gel are ubiquitous materials in society with a wide range of applications. The colloidal networks in these materials can exis
From new detailed experimental data, we found that the Radial Distribution Function (RDF) of inertial particles in turbulence grows explosively with $r^{-6}$ scaling as the collision radius is approached. We corrected a theory by Yavuz et al. (Phys.
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined micro