ﻻ يوجد ملخص باللغة العربية
In contrast to a free electron system, a Tomonaga-Luttinger (TL) liquid in a one dimensional (1D) electron system hosts charge and spin excitations as independent entities. When an electron wave packet is injected into a TL liquid, it transforms into wave packets carrying either charge or spin that propagate at different group velocities and move away from each other. This process, known as spin-charge separation, is the hallmark of TL physics. While the existence of these TL eigenmodes has been identified in momentum- or frequency-resolved measurements, their waveforms, which are a direct manifestation of 1D electron dynamics, have been long awaited to be measured. In this study, we present a time domain measurement for the spin-charge-separation process in an asymmetric chiral TL liquid comprising quantum Hall (QH) edge channels. We measure the waveforms of both charge and spin excitations by combining a spin filter with a time-resolved charge detector. Spatial separation of charge- and spin-wave packets over a distance exceeding 200 um was confirmed. In addition, we found that the 1D electron dynamics can be controlled by tuning the electric environment. These experimental results provide fundamental information about non-equilibrium phenomena in actual 1D electron systems.
The model of interacting fermion systems in one dimension known as Tomonaga-Luttinger liquid (TLL) provides a simple and exactly solvable theoretical framework, predicting various intriguing physical properties. Evidence of TLL has been observed as p
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge sep
Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial separation of the right- and left-moving sn
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phas
The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly-correlated physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the quantum phase transition between metallic and