ﻻ يوجد ملخص باللغة العربية
The $p$-spectral radius of a uniform hypergraph covers many important concepts, such as Lagrangian and spectral radius of the hypergraph, and is crucial for solving spectral extremal problems of hypergraphs. In this paper, we establish a spherically constrained maximization model and propose a first-order conjugate gradient algorithm to compute the $p$-spectral radius of a uniform hypergraph (CSRH). By the semialgebraic nature of the adjacency tensor of a uniform hypergraph, CSRH is globally convergent and obtains the global maximizer with a high probability. When computing the spectral radius of the adjacency tensor of a uniform hypergraph, CSRH stands out among existing approaches. Furthermore, CSRH is competent to calculate the $p$-spectral radius of a hypergraph with millions of vertices and to approximate the Lagrangian of a hypergraph. Finally, we show that the CSRH method is capable of ranking real-world data set based on solutions generated by the $p$-spectral radius model.
Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V.
In this paper, we give some bounds for principal eigenvector and spectral radius of connected uniform hypergraphs in terms of vertex degrees, the diameter, and the number of vertices and edges.
For $0leq alpha < 1$, the $mathcal{A}_{alpha}$-spectral radius of a $k$-uniform hypergraph $G$ is defined to be the spectral radius of the tensor $mathcal{A}_{alpha}(G):=alpha mathcal{D}(G)+(1-alpha) mathcal{A}(G)$, where $mathcal{D}(G)$ and $A(G)$ a
A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in [7]. This connection and its extensions were successfully employed in optimization to provide heuristics for the maxi
Let K_4^3-2e denote the hypergraph consisting of two triples on four points. For an integer n, let t(n, K_4^3-2e) denote the smallest integer d so that every 3-uniform hypergraph G of order n with minimum pair-degree delta_2(G) geq d contains floor{n