ترغب بنشر مسار تعليمي؟ اضغط هنا

Lower bounds for the $mathcal{A}_{alpha}$-spectral radius of uniform hypergraphs

291   0   0.0 ( 0 )
 نشر من قبل Xiao-Dong Zhang Prof.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For $0leq alpha < 1$, the $mathcal{A}_{alpha}$-spectral radius of a $k$-uniform hypergraph $G$ is defined to be the spectral radius of the tensor $mathcal{A}_{alpha}(G):=alpha mathcal{D}(G)+(1-alpha) mathcal{A}(G)$, where $mathcal{D}(G)$ and $A(G)$ are diagonal and the adjacency tensors of $G$ respectively. This paper presents several lower bounds for the difference between the $mathcal{A}_{alpha}$-spectral radius and an average degree $frac{km}{n}$ for a connected $k$-uniform hypergraph with $n$ vertices and $m$ edges, which may be considered as the measures of irregularity of $G$. Moreover, two lower bounds on the $mathcal{A}_{alpha}$-spectral radius are obtained in terms of the maximum and minimum degrees of a hypergraph.



قيم البحث

اقرأ أيضاً

Let $G$ be a connected uniform hypergraphs with maximum degree $Delta$, spectral radius $lambda$ and minimum H-eigenvalue $mu$. In this paper, we give some lower bounds for $Delta-lambda$, which extend the result of [S.M. Cioabu{a}, D.A. Gregory, V. Nikiforov, Extreme eigenvalues of nonregular graphs, J. Combin. Theory, Ser. B 97 (2007) 483-486] to hypergraphs. Applying these bounds, we also obtain a lower bound for $Delta+mu$.
In this paper, we give some bounds for principal eigenvector and spectral radius of connected uniform hypergraphs in terms of vertex degrees, the diameter, and the number of vertices and edges.
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. We also apply these bounds to various matrices associated with a graph or a digraph, obtain some new results or known results about various spectral radii, including the adjacency spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance signless Laplacian spectral radius of a graph or a digraph.
116 - Cunxiang Duan , Ligong Wang 2020
The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radi us (or the signless Laplacian spectral radius) of general hypergraphs in terms of clique number. Moreover, we present a relation between a homogeneous polynomial and the clique number of general hypergraphs. As an application, we finally obtain an upper bound of the spectral radius of general hypergraphs in terms of clique number.
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor. We also apply these bounds to the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا