ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal State Gap in Parent Cuprate Pr2CuO4+/-{delta}

56   0   0.0 ( 0 )
 نشر من قبل Ge He
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a tunneling study on single crystalline parent cuprate thin films, i.e. a series of Pr2CuO4+/-{delta}(PCO) with tunable superconducting transition temperature. The zero-bias anomaly of differential conductance, well reported in the normal state of R2-xCexCuO4 (R = Pr, Nd, La) and named as normal state gap (NSG), is observed in the Ce-free samples. This NSG behaves quite robust against the magnetic field up to 16 T, but fades away with increasing the temperature. Most importantly, we find that the magnitude of the NSG becomes larger with increasing point-contact junction resistance on the superconducting films, which is further enhanced in the non-superconducting samples of more oxygen disorders. The origination of NSG can be understood in the framework of Altshuler-Aronov-Lee (AAL) theory, where the disorder-induced electron-electron interactions suppress the density of states and thereby result in a soft Coulomb gap.



قيم البحث

اقرأ أيضاً

186 - K. Yang , B. P. Xie , D. W. Shen 2006
We explore the electronic structure in the heavily overdoped regime of the single layer cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta. We found that the nodal quasiparticle behavior is dominated mostly by phonons, while the antinodal quasiparti cle lineshape is dominated by spin fluctuations. Moreover, while long range spin fluctuations diminish at very high doping, the local magnetic fluctuations still dominate the quasiparticle dispersion, and the system exhibits a strange metal behavior in the entire overdoped regime.
152 - Li Yu , D. Munzar , A.V. Boris 2007
We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the nor mal state pseudogap (PG) and the superconducting (SC) gap. They show that these phenomena involve different energy scales, exhibit distinct doping dependencies and thus are likely of different origin. In particular, the SW redistribution in the PG state closely resembles the one of a conventional charge- or spin density wave (CDW or SDW) system.
We measure the temperature and frequency dependence of the complex Hall angle for normal state YBa$_2$Cu$_3$O$_7$ films from dc to far-infrared frequencies (20-250 cm$^{-1}$) using a new modulated polarization technique. We determine that the functio nal dependence of the Hall angle on scattering does not fit the expected Lorentzian response. We find spectral evidence supporting models of the Hall effect where the scattering $Gamma_H$ is linear in T, suggesting that a single relaxation rate, linear in temperature, governs transport in the cuprates.
We report a fine tuned doping study of strongly overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ single crystals using electronic Raman scattering. Combined with theoretical calculations, we show that the doping, at which the normal state pseudogap closes , coincides with a Lifshitz quantum phase transition where the active hole-like Fermi surface becomes electron-like. This conclusion suggests that the microscopic cause of the pseudogap is sensitive to the Fermi surface topology. Furthermore, we find that the superconducting transition temperature is unaffected by this transition, demonstrating that their origins are different on the overdoped side.
We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d oped cuprates extending to temperatures far above the critical temperature (Tc). The primary features of our data are incompatible with the spatially inhomogeneous response being dominated by known charge density wave (CDW) and spin density wave (SDW) orders. Instead the normal-state inhomogeneous line broadening is found to scale with the maximum value Tc^max for each cuprate family, indicating it is controlled by the same energy scale as Tc. Since the degree of chemical disorder varies widely among the cuprates we have measured, the observed scaling constitutes evidence for an intrinsic electronic tendency toward inhomogeneity above Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا