ترغب بنشر مسار تعليمي؟ اضغط هنا

Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect

71   0   0.0 ( 0 )
 نشر من قبل Roberto Passante
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerated atoms, prepared in a correlated Bell-type state, and interacting with the electromagnetic field in the vacuum state, separating vacuum fluctuations and radiation reaction contributions, both in the free-space and in the presence of a perfectly reflecting plate. We show that nonthermal effects of acceleration manifest in the resonance interaction, yielding a change of the distance dependence of the resonance interaction energy. This suggests that the equivalence between temperature and acceleration does not apply to all radiative properties of accelerated atoms. To further explore this aspect, we evaluate the resonance interaction between two atoms in non inertial motion in the coaccelerated (Rindler) frame and show that in this case the assumption of an Unruh temperature for the field is not required for a complete equivalence of locally inertial and coaccelerated points of views.



قيم البحث

اقرأ أيضاً

The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
Highly polarizable metastable He* ($mathrm{2^3S}$) and Ne* ($mathrm{2^3P}$) atoms have been diffracted from a 100 nm period silicon nitride transmission grating and the van der Waals coefficients $C_3$ for the interaction of the excited atoms with th e silicon nitride surface have been determined from the diffraction intensities out to the 10th order. The results agree with calculations based on the non-retarded Lifshitz formula.
Quantum Monte Carlo (QMC) methods have been used to obtain accurate binding-energy data for pairs of parallel thin metallic wires and layers modeled by 1D and 2D homogeneous electron gases. We compare our QMC binding energies with results obtained wi thin the random phase approximation, finding significant quantitative differences and disagreement over the asymptotic behavior for bilayers at low densities. We have calculated pair-correlation functions for metallic biwire and bilayer systems. Our QMC data could be used to investigate van der Waals energy functionals.
We revisit the Unruh effect to investigate how finite acceleration would affect a scalar condensate. We discuss a negative thermal-like correction associated with acceleration. From the correspondence between thermo-field dynamics and acceleration ef fects we give an explanation for this negative sign. Using this result and solving the gap equation we show that the condensate should increase with larger acceleration.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا