ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity and relaxation dynamics of a laser-stirred 2D Bose gas

393   0   0.0 ( 0 )
 نشر من قبل Vijay Pal Singh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of $^{87}$Rb atoms using classical field dynamics. In the experiment by R. Desbuquois textit{et al.}, Nat. Phys. textbf{8}, 645 (2012), a 2D quasicondensate in a trap is stirred by a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity $v_c$, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.



قيم البحث

اقرأ أيضاً

We propose a model for addressing the superfluidity of two different Fermi species confined in a bilayer geometry of square optical lattices. The fermions are assumed to be molecules with interlayer s-wave interactions, whose dipole moments are orien ted perpendicularly to the layers. Using functional integral techniques we investigate the BCS-like state induced in the bilayer at finite temperatures. In particular, we determine the critical temperature as a function of the coupling strength between molecules in different layers and of the interlayer spacing. By means of Ginzburg-Landau theory we calculate the superfluid density. We also study the dimerized BEC phase through the Berezinskii-Kosterlitz-Thouless transition, where the effective mass leads to identify the crossover from BCS to BEC regimes. The possibility of tuning the effective mass as a direct consequence of the lattice confinement, allows us to suggest a range of values of the interlayer spacing, which would enable observing this superfluidity within current experimental conditions.
164 - E. Fava , T. Bienaime , C. Mordini 2017
The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of sp in drag, while the two condensates exhibit a counter flow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean field effect. We also measure the static polarizability of the condensed and thermal parts and we find a large increase of the condensate polarizability with respect to the T=0 value, in agreement with the predictions of theory.
We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its dynamical response to a collective excitation. Relying on a novel local correlation analysis, we are able to probe inhomogeneous clouds and reveal their l ocal dynamics. We identify in this way the superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii--Kosterlitz--Thouless crossover occurs. This new analysis also allows to evidence the coupling of the two fluids which induces at finite temperatures damping rates larger than the usual Landau damping.
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states one should expect in equilibrium but does no t hint as to how closed quantum many-body systems dynamically equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions quantum many-body models can relax to a situation that locally or with respect to certain observables appears as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local densities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization group method are in an excellent quantitative agreement with the experimental data. For very long times, all three local observables show a fast relaxation to equilibrium values compatible with those expected for a global maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms based on matrix product states can efficiently keep track of.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system , we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا