ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics

73   0   0.0 ( 0 )
 نشر من قبل Helene Perrin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Camilla De Rossi




اسأل ChatGPT حول البحث

We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its dynamical response to a collective excitation. Relying on a novel local correlation analysis, we are able to probe inhomogeneous clouds and reveal their local dynamics. We identify in this way the superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii--Kosterlitz--Thouless crossover occurs. This new analysis also allows to evidence the coupling of the two fluids which induces at finite temperatures damping rates larger than the usual Landau damping.



قيم البحث

اقرأ أيضاً

Phase transitions are ubiquitous in our three-dimensional world. By contrast most conventional transitions do not occur in infinite uniform two-dimensional systems because of the increased role of thermal fluctuations. Here we explore the dimensional crossover of Bose-Einstein condensation (BEC) for a weakly interacting atomic gas confined in a novel quasi-two-dimensional geometry, with a flat in-plane trap bottom. We detect the onset of an extended phase coherence, using velocity distribution measurements and matter-wave interferometry. We relate this coherence to the transverse condensation phenomenon, in which a significant fraction of atoms accumulate in the ground state of the motion perpendicular to the atom plane. We also investigate the dynamical aspects of the transition through the detection of topological defects that are nucleated in a quench cooling of the gas, and we compare our results to the predictions of the Kibble-Zurek theory for the conventional BEC second-order phase transition.
We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of $^{87}$Rb atoms using classical field dynamics. In the experiment by R. Desbuquois textit{et al.}, Nat. Phys. textbf{8}, 645 (2012), a 2D quasicondensate in a trap is stirre d by a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity $v_c$, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.
164 - E. Fava , T. Bienaime , C. Mordini 2017
The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of sp in drag, while the two condensates exhibit a counter flow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean field effect. We also measure the static polarizability of the condensed and thermal parts and we find a large increase of the condensate polarizability with respect to the T=0 value, in agreement with the predictions of theory.
We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue, signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra nsition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا