ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of the wide-orbit circumbinary giant planet HD 106906: A dynamical scenario and its impact on the disk

68   0   0.0 ( 0 )
 نشر من قبل Laetitia Rodet
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A giant planet has been recently resolved at a projected distance of 730 au from the tight pair of young ($sim$ 13 Myr) intermediate-mass stars HD 106906AB in the Lower Centaurus Crux (LCC) group. The stars are surrounded by a debris disk which displays a ring-like morphology and strong asymmetries at multiple scales. We aim at studying the likelihood of a scenario where the planet formed closer to the stars in the disk, underwent inward disk-induced migration, and got scattered away by the binary star before being stabilized by a close encounter (fly-by). We performed semi-analytical calculations and numerical simulations (Swift_HJS package) to model the interactions between the planet and the two stars. We accounted for the migration as a simple force. We studied the LCC kinematics to set constraints on the local density of stars, and therefore on the fly-by likelihood. We performed N-body simulations to determine the effects of the planet trajectories (ejection and secular effects) onto the disk morphology. The combination of the migration and mean-motion resonances with the binary star (often 1:6) can eject the planet. Nonetheless, we estimate that the fly-by hypothesis decreases the scenario probability to less than $10^{-7}$ for a derived local density of stars of 0.11 stars/pc$^{3}$. We show that the concomitant effect of the planet and stars trajectories induce spiral-features in the disk which may correspond to the observed asymmetries. Moreover, the present disk shape suggests that the planet is on an eccentric orbit. The scenario we explored is a natural hypothesis if the planet formed within a disk. Conversely, its low probability of occurrence and the fact that HD 106906 b shares some characteristics with other systems in Sco-Cen (e.g. HIP 78530, in terms of mass ratio and separation) may indicate an alternative formation pathway for those objects.



قيم البحث

اقرأ أيضاً

HD 106906 is a 15 Myr old short-period (49 days) spectroscopic binary that hosts a wide-separation (737 au) planetary-mass ($sim11,M_{rm Jup}$) common proper motion companion, HD 106906 b. Additionally, a circumbinary debris disk is resolved at optic al and near-infrared wavelengths that exhibits a significant asymmetry at wide separations that may be driven by gravitational perturbations from the planet. In this study we present the first detection of orbital motion of HD 106906 b using Hubble Space Telescope images spanning a 14 yr period. We achieve high astrometric precision by cross-registering the locations of background stars with the Gaia astrometric catalog, providing the subpixel location of HD 106906 that is either saturated or obscured by coronagraphic optical elements. We measure a statistically significant $31.8pm7.0$ mas eastward motion of the planet between the two most constraining measurements taken in 2004 and 2017. This motion enables a measurement of the inclination between the orbit of the planet and the inner debris disk of either $36_{-14}^{+27}$ deg or $44_{-14}^{+27}$ deg, depending on the true orientation of the orbit of the planet. There is a strong negative correlation between periastron and mutual inclination; orbits with smaller periastra are more misaligned with the disk plane. With a periastron of $510_{-320}^{+480}$ au, HD 106906 b is likely detached from the planetary region within 100 au radius, showing that a Planet Nine-like architecture can be established very early in the evolution of a planetary system.
193 - D. Fedele 2021
This paper reports on a new analysis of archival ALMA $870,mu$m dust continuum observations. Along with the previously observed bright inner ring ($r sim 20-40,$au), two addition substructures are evident in the new continuum image: a wide dust gap, $r sim 40-150,$au, and a faint outer ring ranging from $r sim 150,$au to $r sim 250,$au and whose presence was formerly postulated in low-angular-resolution ALMA cycle 0 observations but never before observed. Notably, the dust emission of the outer ring is not homogeneous, and it shows two prominent azimuthal asymmetries that resemble an eccentric ring with eccentricity $e = 0.07 $. The characteristic double-ring dust structure of HD 100546 is likely produced by the interaction of the disk with multiple giant protoplanets. This paper includes new smoothed-particle-hydrodynamic simulations with two giant protoplanets, one inside of the inner dust cavity and one in the dust gap. The simulations qualitatively reproduce the observations, and the final masses and orbital distances of the two planets in the simulations are 3.1 $M_{J}$ at 15 au and 8.5 $M_{J}$ at 110 au, respectively. The massive outer protoplanet substantially perturbs the disk surface density distribution and gas dynamics, producing multiple spiral arms both inward and outward of its orbit. This can explain the observed perturbed gas dynamics inward of 100 au as revealed by ALMA observations of CO. Finally, the reduced dust surface density in the $sim 40-150,$au dust gap can nicely clarify the origin of the previously detected H$_2$O gas and ice emission.
We analyze the highest-resolution millimeter continuum and near-infrared (NIR) scattered-light images presented to date of the circumbinary disk orbiting V4046 Sgr, a ~20 Myr old actively accreting, close binary T Tauri star system located a mere 72. 4 pc from Earth. We observed the disk with the Atacama Large Millimeter/submillimeter Array (ALMA) at 870-micron during Cycle 4, and we analyze these data in conjunction with archival NIR (H band) polarimetric images obtained with SPHERE/IRDIS on the ESO Very Large Telescope. At 0.3 (20 au) resolution, the 870-micron image reveals a marginally resolved ring that peaks at ~32 au and has an extension of ~ 90 au. We infer a lower limit on dust mass of ~ 60.0 M_earth within the 870-micron ring, and confirm that the ring is well aligned with the larger-scale gaseous disk. A second, inner dust ring is also tentatively detected in the ALMA observations; its position appears coincident with the inner (~14 au radius) ring detected in scattered light. Using synthetic 870 micron and H-band images obtained from disk-planet interaction simulations, we attempt to constrain the mass of the putative planet orbiting at 20 au. Our trials suggest that a circumbinary Jovian-mass planet may be responsible for generating the dust ring and gap structures detected within the disk. We discuss the longevity of the gas-rich disk orbiting V4046 Sgr in the context of the binary nature of the system.
Recent ALMA observations may indicate a surprising abundance of sub-Jovian planets on very wide orbits in protoplanetary discs that are only a few million years old. These planets are too young and distant to have been formed via the Core Accretion ( CA) scenario, and are much less massive than the gas clumps born in the classical Gravitational Instability (GI) theory. It was recently suggested that such planets may form by the partial destruction of GI protoplanets: energy output due to the growth of a massive core may unbind all or most of the surrounding pre-collapse protoplanet. Here we present the first 3D global disc simulations that simultaneously resolve grain dynamics in the disc and within the protoplanet. We confirm that massive GI protoplanets may self-destruct at arbitrarily large separations from the host star provided that solid cores of mass around 10-20 Earth masses are able to grow inside them during their pre-collapse phase. In addition, we find that the heating force recently analysed by Masset and Velasco Romero (2017) perturbs these cores away from the centre of their gaseous protoplanets. This leads to very complicated dust dynamics in the protoplanet centre, potentially resulting in the formation of multiple cores, planetary satellites, and other debris such as planetesimals within the same protoplanet. A unique prediction of this planet formation scenario is the presence of sub-Jovian planets at wide orbits in Class 0/I protoplanetary discs.
HD 106906 is a young, binary stellar system, located in the Lower Centaurus Crux (LCC) group. This system is unique among discovered systems in that it contains an asymmetrical debris disk, as well as an 11 M$_{Jup}$ planet companion, at a separation of $sim$735 AU. Only a handful of other systems are known to contain both a disk and directly imaged planet, where HD 106906 is the only one in which the planet has apparently been scattered. The debris disk is nearly edge on, and extends roughly to $>$500 AU, where previous studies with HST have shown the outer regions to have high asymmetry. To better understand the structure and composition of the disk, we have performed a deep polarimetric study of HD 106906s asymmetrical debris disk using newly obtained $H$-, $J$-, and $K1$-band polarimetric data from the Gemini Planet Imager (GPI). An empirical analysis of our data supports a disk that is asymmetrical in surface brightness and structure, where fitting an inclined ring model to the disk spine suggests that the disk may be highly eccentric ($egtrsim0.16$). A comparison of the disk flux with the stellar flux in each band suggests a blue color that also does not significantly vary across the disk. We discuss these results in terms of possible sources of asymmetry, where we find that dynamical interaction with the planet companion, HD 106906b, is a likely candidate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا