ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of wide-orbit ALMA planets: giant protoplanets disrupted by their cores

76   0   0.0 ( 0 )
 نشر من قبل Jack Humphries Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent ALMA observations may indicate a surprising abundance of sub-Jovian planets on very wide orbits in protoplanetary discs that are only a few million years old. These planets are too young and distant to have been formed via the Core Accretion (CA) scenario, and are much less massive than the gas clumps born in the classical Gravitational Instability (GI) theory. It was recently suggested that such planets may form by the partial destruction of GI protoplanets: energy output due to the growth of a massive core may unbind all or most of the surrounding pre-collapse protoplanet. Here we present the first 3D global disc simulations that simultaneously resolve grain dynamics in the disc and within the protoplanet. We confirm that massive GI protoplanets may self-destruct at arbitrarily large separations from the host star provided that solid cores of mass around 10-20 Earth masses are able to grow inside them during their pre-collapse phase. In addition, we find that the heating force recently analysed by Masset and Velasco Romero (2017) perturbs these cores away from the centre of their gaseous protoplanets. This leads to very complicated dust dynamics in the protoplanet centre, potentially resulting in the formation of multiple cores, planetary satellites, and other debris such as planetesimals within the same protoplanet. A unique prediction of this planet formation scenario is the presence of sub-Jovian planets at wide orbits in Class 0/I protoplanetary discs.



قيم البحث

اقرأ أيضاً

Searches for young gas giant planets at wide separations have so far focused on techniques appropriate for compact (Jupiter sized) planets. Here we point out that protoplanets born through Gravitational Instability (GI) may remain in an initial pre-c ollapse phase for as long as the first $ 10^5-10^7$ years after formation. These objects are hundreds of times larger than Jupiter and their atmospheres are too cold ($Tsim$ tens of K) to emit in the NIR or H$alpha$ via accretion shocks. However, it is possible that their dust emission can be detected with ALMA, even around Class I and II protoplanetary discs. In this paper we produce synthetic observations of these protoplanets. We find that making a detection in a disc at 140 parsecs would require a few hundred minutes of ALMA band 6 observation time. Protoplanets with masses of 3-5 $M_J$ have the highest chance of being detected; less massive objects require unreasonably long observation times (1000 minutes) while more massive ones collapse into giant planets before $10^5$ years. We propose that high resolution surveys of young ($10^5-10^6$ years), massive and face on discs offer the best chance for observing protoplanets. Such a detection would help to place constraints on the protoplanet mass spectrum, explain the turnover in the occurrence frequency of gas giants with system metallicity and constrain the prevalence of GI as a planet formation mechanism. Consistent lack of detection would be evidence against GI as a common planet formation mechanism.
Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen-helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid surface density in the surrounding nebula. We suggest that giant planets cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiters core may not be well-defined. Accurate measurements of Jupiters gravitational field by Juno could put constraints on Jupiters core mass. However, as we suggest here, the definition of Jupiters core is complex, and the cores physical properties (mass, density) depend on the actual definition of the core and on its growth history.
The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm planets are expected to form at radial distances $lesssim 20$ au in order to form massive cores (with mass es $gtrsim 10~textrm{M}_{oplus}$) able to trigger the gaseous runaway growth before the dissipation of the disc. This has encouraged authors to find modifications of the standard scenario as well as alternative theories like the formation of planets by gravitational instabilities in the disc to explain the existence of giant planets in wide orbits. However, there is not yet consensus on how these systems are formed. In this letter, we present a new natural mechanism for the formation of giant planets in wide orbits within the core accretion paradigm. If photoevaporation is considered, after a few Myr of viscous evolution a gap in the gaseous disc is opened. We found that, under particular circumstances planet migration becomes synchronised with the evolution of the gap, which results in an efficient outward planet migration. This mechanism is found to allow the formation of giant planets with masses $M_plesssim 1 M_{rm Jup}$ in wide stable orbits as large as $sim$130 au from the central star.
Context: We studied numerically the formation of giant planet (GP) and brown dwarf (BD) embryos in gravitationally unstable protostellar disks and compared our findings with directly-imaged, wide-orbit (>= 50 AU) companions known to-date. The viabili ty of the disk fragmentation scenario for the formation of wide-orbit companions in protostellar disks around (sub-)solar mass stars was investigated. Methods: We used numerical hydrodynamics simulations of disk formation and evolution with an accurate treatment of disk thermodynamics. The use of the thin-disk limit allowed us to probe the long-term evolution of protostellar disks. We focused on models that produced wide-orbit GP/BD embryos, which opened a gap in the disk and showed radial migration timescales similar to or longer than the typical disk lifetime. Results: While disk fragmentation was seen in the majority of our models, only 6 models out of 60 revealed the formation of quasi-stable, wide-orbit GP/BD embryos. Disk fragmentation produced GP/BD embryos with masses in the 3.5-43 M_J range, covering the whole mass spectrum of directly-imaged, wide-orbit companions to (sub-)solar mass stars. On the other hand, our modelling failed to produce embryos on orbital distances <= 170 AU, whereas several directly-imaged companions were found at smaller orbits down to a few AU. Disk fragmentation also failed to produce wide-orbit companions around stars with mass <= 0.7 Msun, in disagreement with observations. Conclusions: Disk fragmentation is unlikely to explain the whole observed spectrum of wide-orbit companions to (sub-)solar-mass stars and other formation mechanisms, e.g., dynamical scattering of closely-packed companions onto wide orbits, should be invoked to account for companions at orbital distance from a few tens to approx 150 AU and wide-orbit companions with masses of the host star <= 0.7 Msun. (abridged)
193 - D. Fedele 2021
This paper reports on a new analysis of archival ALMA $870,mu$m dust continuum observations. Along with the previously observed bright inner ring ($r sim 20-40,$au), two addition substructures are evident in the new continuum image: a wide dust gap, $r sim 40-150,$au, and a faint outer ring ranging from $r sim 150,$au to $r sim 250,$au and whose presence was formerly postulated in low-angular-resolution ALMA cycle 0 observations but never before observed. Notably, the dust emission of the outer ring is not homogeneous, and it shows two prominent azimuthal asymmetries that resemble an eccentric ring with eccentricity $e = 0.07 $. The characteristic double-ring dust structure of HD 100546 is likely produced by the interaction of the disk with multiple giant protoplanets. This paper includes new smoothed-particle-hydrodynamic simulations with two giant protoplanets, one inside of the inner dust cavity and one in the dust gap. The simulations qualitatively reproduce the observations, and the final masses and orbital distances of the two planets in the simulations are 3.1 $M_{J}$ at 15 au and 8.5 $M_{J}$ at 110 au, respectively. The massive outer protoplanet substantially perturbs the disk surface density distribution and gas dynamics, producing multiple spiral arms both inward and outward of its orbit. This can explain the observed perturbed gas dynamics inward of 100 au as revealed by ALMA observations of CO. Finally, the reduced dust surface density in the $sim 40-150,$au dust gap can nicely clarify the origin of the previously detected H$_2$O gas and ice emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا