ﻻ يوجد ملخص باللغة العربية
Analysis of solar magnetic fields using observations as well as theoretical interpretations of the scattering polarization is commonly designated as a high priority area of the solar research. The interpretation of the observed polarization raises a serious theoretical challenge to the researchers involved in this field. In fact, realistic interpretations need detailed investigations of the depolarizing role of isotropic collisions with neutral hydrogen. The goal of this paper is to determine new relationships which allow the calculation of any collisional rates of the d-levels of ions by simply determining the value of n^* and $E_p$ without the need of determining the interaction potentials and treating the dynamics of collisions. The determination of n^* and E_p is easy and based on atomic data usually available online. Accurate collisional rates allow a reliable diagnostics of solar magnetic fields. In this work we applied our collisional FORTRAN code to a large number of cases involving complex and simple ions. After that, the results are utilized and injected in a genetic programming code developed with C-langugae in order to infer original relationships which will be of great help to solar applications. We discussed the accurarcy of our collisional rates in the cases of polarized complex atoms and atoms with hyperfine structure. The relationships are expressed on the tensorial basis and we explain how to include their contributions in the master equation giving the variation of the density matrix elements. As a test, we compared the results obtained through the general relationships provided in this work with the results obtained directly by running our code of collisions. These comparisons show a percentage of error of about 10% in the average value.
Our work is concerned with the case of the solar molecule CN which presents conspicuous profiles of scattering polarization. We start by calculating accurate PES for the singlet and triplet electronic ground states in order to characterize the collis
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magne
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot cor
Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicul
It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial