ﻻ يوجد ملخص باللغة العربية
Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.
Determining the magnetic field related to solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic and magnetic structure of the Chromosphere. Here we report on the magn
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D C
Hydrodynamic jets are unstable to the kink instability (m=1 mode in cylindrical geometry) owing to the centripetal force, which increases the transverse displacement of the jet. When the jet moves along a magnetic field, then the Lorentz force tries
Spicules are intermittently rising above the surface of the Sun eruptions; EUV jets are now also reported in immediately above layers. The variation of spicule orientation with respect to the solar latitude, presumably reflecting the confinement and
The weak-field approximation implying linear relationship between Stokes $V/I$ and longitudinal magnetic field, $B_{Vert}$, often suffers from saturation observed in strong magnetic field regions such as sunspot umbra. In this work, we intend to impr