ﻻ يوجد ملخص باللغة العربية
It is widely assumed that human exploration beyond Earths orbit will require vehicles capable of providing long-duration habitats that simulate an Earthlike environment: consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally-manufactured counterparts.
We are able to unify various disparate claims and results in the literature, that stand in the way of a unified description and understanding of human conflict. First, we provide a reconciliation of the numerically different exponent values for fatal
Nucleation of a solid in solid is initiated by the appearance of distinct dynamical heterogeneities, consisting of `active particles whose trajectories show an abrupt transition from ballistic to diffusive, coincident with the discontinuous transitio
Breathing is vital to life. Therefore, the real-time monitoring of breathing pattern of a patient is crucial to respiratory rehabilitation therapies such as magnetic resonance exams for respiratory-triggered imaging, chronic pulmonary disease treatme
We formulate a generalized susceptible exposed infectious recovered (SEIR) model on a graph, describing the population dynamics of an open crowded place with an arbitrary topology. As a sample calculation, we discuss three simple cases, both analytic
A set of 50,000 artificial Earth impacting asteroids was used to obtain, for the first time, information about the dominance of individual impact effects such as wind blast, overpressure shock, thermal radiation, cratering, seismic shaking, ejecta de