ﻻ يوجد ملخص باللغة العربية
The cosmological evolution of primordial black holes (PBHs) is considered. A comprehensive view of the accretion and evaporation histories of PBHs across the entire cosmic history is presented, with focus on the critical mass holes. The critical mass of a PBH for current era evaporation is $M_{cr}sim 5.1times10^{14}$ g. Across cosmic time such a black hole will not accrete radiation or matter in sufficient quantity to hasten the inevitable evaporation, if the black hole remains within an average volume of the universe. The accretion rate onto PBHs is most sensitive to the mass of the hole, the sound speed in the cosmological fluid, and the energy density of the accreted components. It is not easy for a PBH to accrete the average cosmological fluid to reach $30M_odot$ by $zsim0.1$, the approximate mass and redshift of the merging BHs that were the sources of the gravitational wave events GW150914 and GW151226. A PBH located in an overdense region can undergo enhanced accretion leading to the possibility of growing by many orders of magnitude across cosmic history. Thus, two merging PBHs are a plausible source for the observed gravitational wave events. However, it is difficult for isolated PBHs to grow to supermassive black holes (SMBHs) at high redshift with masses large enough to fit observational constraints.
Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray back
Primordial black holes might comprise a significant fraction of the dark matter in the Universe and be responsible for the gravitational wave signals from black hole mergers observed by the LIGO/Virgo collaboration. The spatial clustering of primordi
Evolution of a cluster of primordial black holes in the two-body relaxation approximation based on the Fokker-Planck equation is discussed. In our calculation, we consider the self-gravitating cluster with a wide range of black holes masses from $10^
We discuss the possibility of forming primordial black holes during a first-order phase transition in the early Universe. As is well known, such a phase transition proceeds through the formation of true-vacuum bubbles in a Universe that is still in a
The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the produ