ﻻ يوجد ملخص باللغة العربية
Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.
The cosmological evolution of primordial black holes (PBHs) is considered. A comprehensive view of the accretion and evaporation histories of PBHs across the entire cosmic history is presented, with focus on the critical mass holes. The critical mass
Primordial black holes (PBHs) are black holes which may form in the early Universe through the gravitational collapse of primordial cosmological density fluctuations. Due to Hawking radiation these PBHs are supposed to evaporate by emitting particles
The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the produ
Primordial black holes (PBHs), hypothesized to be the result of density fluctuations during the early universe, are candidates for dark matter. When microlensing background stars, they cause a transient apparent enhancement of the flux. Measuring the
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,