Results of the search for $sim (10^{16} - 10^{17.5})$ eV primary cosmic-ray photons with the data of the Moscow State University (MSU) Extensive Air Shower (EAS) array are reported. The full-scale reanalysis of the data with modern simulations of the installation does not confirm previous indications of the excess of gamma-ray candidate events. Upper limits on the corresponding gamma-ray flux are presented. The limits are the most stringent published ones at energies $sim 10^{17}$ eV.
Comparing the signals measured by the surface and underground scintillator detectors of the Yakutsk Extensive Air Shower Array, we place upper limits on the integral flux and the fraction of primary cosmic-ray photons with energies E > 10^18 eV, E >
2*10^18 eV and E > 4*10^18 eV. The large collected statistics of the showers measured by large-area muon detectors provides a sensitivity to photon fractions < 10^-2, thus achieving precision previously unreachable at ultra-high energies.
We explore the feasibility of estimating primary cosmic ray composition at high energies from the study of two parameters of Extensive Air Showers (EAS) at ground and underground level with Monte Carlo simulations using the new EPOS and QGSJETII hadr
onic models tuned with LHC data. Namely, the slope and density at a given distance of the muon lateral distribution function are analysed in this work. The power to discriminate primary masses is quantified in terms of merit factor for each parameter. The analysis considers three different primary particles (proton, iron and gamma), four different zenith angles (0$^{circ}$, 15$^{circ}$, 30$^{circ}$ and 45$^{circ}$) and primary energies of $10^{17.25}$ eV, $10^{17.50}$ eV and $10^{17.75}$ eV.
Cosmic rays are the highest energy particles found in nature. Measurements of the mass composition of cosmic rays between 10^{17} eV and 10^{18} eV are essential to understand whether this energy range is dominated by Galactic or extragalactic source
s. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate cascades of secondary particles (air showers) in the atmosphere and their masses are inferred from measurements of the atmospheric depth of the shower maximum, Xmax, or the composition of shower particles reaching the ground. Current measurements suffer from either low precision, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique, suitable for determination of Xmax with a duty cycle of in principle nearly 100%. The radiation is generated by the separation of relativistic charged particles in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean precision of 16 g/cm^2 between 10^{17}-10^{17.5} eV. Because of the high resolution in $Xmax we can determine the mass spectrum and find a mixed composition, containing a light mass fraction of ~80%. Unless the extragalactic component becomes significant already below 10^{17.5} eV, our measurements indicate an additional Galactic component dominating at this energy range.
We give an overview of the SPHERE experiment based on detection of reflected Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the energy region E>10^{15} eV. A brief history of the reflected Cherenkov light technique is giv
en; the observations carried out with the SPHERE-2 detector are summarized; the methods of the experimental datasample analysis are described. The first results on the primary cosmic ray all-nuclei energy spectrum and mass composition are presented. Finally, the prospects of the SPHERE experiment and the reflected Cherenkov light technique are given.
The KASCADE-Grande Muon Tracking Detector enables with high accuracy the measurement of directions of EAS muons with energy above 0.8 GeV and up to 700 m distance from the shower centre. Reconstructed muon tracks are used to investigate muon pseudora
pidity (eta) distributions. These distributions are nearly identical to the pseudorapidity distributions of their parent mesons produced in hadronic interactions. Comparison of the eta distributions from measured and simulated showers can be used to test the quality of the high energy hadronic interaction models. In this context a comparison of the QGSJet-II-2 and QGSJet-II-4 model will be shown. The pseudorapidity distributions reflect the longitudinal development of EAS and, as such, are sensitive to the mass of the cosmic rays primary particles. With various parameters of the eta distribution, obtained from the MTD data, it is possible to calculate the mean logarithmic mass of CRs. The results of the <lnA> analysis in the primary energy range 10^{16} eV - 10^{17} eV with the 1st quartile (Q1) of eta distribution will be presented.
Yu.A. Fomin
,N.N. Kalmykov
,I.S. Karpikov
.
(2017)
.
"Constraints on the flux of $sim (10^{16} - 10^{17.5})$ eV cosmic photons from the EAS-MSU muon data"
.
Ivan Karpikov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا