ترغب بنشر مسار تعليمي؟ اضغط هنا

Emptiness of zero automata is decidable

197   0   0.0 ( 0 )
 نشر من قبل Hugo Gimbert
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero automata are a probabilistic extension of parity automata on infinite trees. The satisfiability of a certain probabilistic variant of mso, called tmso + zero, reduces to the emptiness problem for zero automata. We introduce a variant of zero automata called nonzero automata. We prove that for every zero automaton there is an equivalent nonzero automaton of quadratic size and the emptiness problem of nonzero automata is decidable and both in NP and in coNP. These results imply that tmso + zero has decidable satisfiability.



قيم البحث

اقرأ أيضاً

Subzero automata is a class of tree automata whose acceptance condition can express probabilistic constraints. Our main result is that the problem of determining if a subzero automaton accepts some regular tree is decidable.
155 - Pierre Ganty 2021
This volume contains the proceedings of the 12th International Symposium on Games, Automata, Logic and Formal Verification (GandALF 2021). The aim of GandALF 2021 symposium is to bring together researchers from academia and industry which are activel y working in the fields of Games, Automata, Logics, and Formal Verification. The idea is to cover an ample spectrum of themes, ranging from theory to applications, and stimulate cross-fertilization.
109 - Sven Schewe 2020
This paper discusses the hardness of finding minimal good-for-games (GFG) Buchi, Co-Buchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, wh ere minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Buchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Buchi, Co-Buchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Buchi automata: they use a similar reductions, and the same hard class of languages.
We introduce the notion of adaptive synchronisation for pushdown automata, in which there is an external observer who has no knowledge about the current state of the pushdown automaton, but can observe the contents of the stack. The observer would th en like to decide if it is possible to bring the automaton from any state into some predetermined state by giving inputs to it in an emph{adaptive} manner, i.e., the next input letter to be given can depend on how the contents of the stack changed after the current input letter. We show that for non-deterministic pushdown automata, this problem is 2-EXPTIME-complete and for deterministic pushdown automata, we show EXPTIME-completeness. To prove the lower bounds, we first introduce (different variants of) subset-synchronisation and show that these problems are polynomial-time equivalent with the adaptive synchronisation problem. We then prove hardness results for the subset-synchronisation problems. For proving the upper bounds, we consider the problem of deciding if a given alternating pushdown system has an accepting run with at most $k$ leaves and we provide an $n^{O(k^2)}$ time algorithm for this problem.
We introduce homing vector automata, which are finite automata augmented by a vector that is multiplied at each step by a matrix determined by the current transition, and have to return the vector to its original setting in order to accept the input. The computational power and properties of deterministic, nondeterministic, blind, non-blind, real-time and one-w
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا