ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing Adiabatic Quantum Optimization: A Case Study for the Traveling Salesman Problem

149   0   0.0 ( 0 )
 نشر من قبل Bettina Heim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With progress in quantum technology more sophisticated quantum annealing devices are becoming available. While they offer new possibilities for solving optimization problems, their true potential is still an open question. As the optimal design of adiabatic algorithms plays an important role in their assessment, we illustrate the aspects and challenges to consider when implementing optimization problems on quantum annealing hardware based on the example of the traveling salesman problem (TSP). We demonstrate that tunneling between local minima can be exponentially suppressed if the quantum dynamics are not carefully tailored to the problem. Furthermore we show that inequality constraints, in particular, present a major hurdle for the implementation on analog quantum annealers. We finally argue that programmable digital quantum annealers can overcome many of these obstacles and can - once large enough quantum computers exist - provide an interesting route to using quantum annealing on a large class of problems.



قيم البحث

اقرأ أيضاً

Theory of computer calculations strongly depends on the nature of elements the computer is made of. Quantum interference allows to formulate the Shor factorization algorithm turned out to be more effective than any one written for classical computers . Similarly, quantum wave packet reduction allows to devise the Grover search algorithm which outperforms any classical one. In the present paper we argue that the quantum incoherent tunneling can be used for elaboration of new algorithms able to solve some NP-hard problems, such as the Traveling Salesman Problem, considered to be intractable in the classical theory of computer computations.
A new characterisation of Hamiltonian graphs using f-cutset matrix is proposed. A new exact polynomial time algorithm for the travelling salesman problem (TSP) based on this new characterisation is developed. We then define so called ordered weighted adjacency list for given weighted complete graph and proceed to the main result of the paper, namely, the exact algorithm based on utilisation of ordered weighted adjacency list and the simple properties that any path or circuit must satisfy. This algorithm performs checking of sub-lists, containing (p-1) entries (edge pairs) for paths and p entries (edge pairs) for circuits, chosen from ordered adjacency list in a well defined sequence to determine exactly the shortest Hamiltonian path and shortest Hamiltonian circuit in a weighted complete graph of p vertices. The procedure has intrinsic advantage of landing on the desired solution in quickest possible time and even in worst case in polynomial time. A new characterisation of shortest Hamiltonian tour for a weighted complete graph satisfying triangle inequality (i.e. for tours passing through every city on a realistic map of cities where cities can be taken as points on a Euclidean plane) is also proposed. Finally, we propose a classical algorithm for unstructured search and also three new quantum algorithms for unstructured search which exponentially speed up the searching ability in the unstructured database and discuss its effect on the NP-Complete problems.
We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum -length edge) cost. We achieve an O(log n / log log n) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, Mk{a}dry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
Quantum Computing is considered as the next frontier in computing, and it is attracting a lot of attention from the current scientific community. This kind of computation provides to researchers with a revolutionary paradigm for addressing complex op timization problems, offering a significant speed advantage and an efficient search ability. Anyway, Quantum Computing is still in an incipient stage of development. For this reason, present architectures show certain limitations, which have motivated the carrying out of this paper. In this paper, we introduce a novel solving scheme coined as hybrid Quantum Computing - Tabu Search Algorithm. Main pillars of operation of the proposed method are a greater control over the access to quantum resources, and a considerable reduction of non-profitable accesses. To assess the quality of our method, we have used 7 different Traveling Salesman Problem instances as benchmarking set. The obtained outcomes support the preliminary conclusion that our algorithm is an approach which offers promising results for solving partitioning problems while it drastically reduces the access to quantum computing resources. We also contribute to the field of Transfer Optimization by developing an evolutionary multiform multitasking algorithm as initialization method.
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا