ﻻ يوجد ملخص باللغة العربية
Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This paper presents calculations of reactor antineutrino interactions from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering in a water-based detector operated $gtrsim10$ km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are differential and integral interaction rates from the quasi-elastic and elastic processes. There are two underground facilities capable of hosting a detector ($sim1$ kT H$_2$O) project nearby ($Lsim20$ km) an operating commercial reactor ($P_{th}sim3$ GW). These reactor-site combinations, which are under consideration for project WATCHMAN, are Perry-Morton on the southern shore of Lake Erie in the United States and Hartlepool-Boulby on the western shore of the North Sea in England. The signal rate from the proximal reactor is about five times greater at the Morton site than at the Boulby site due to shorter reactor-site separation distance, larger reactor thermal power, and greater neutrino oscillation survival probability. Although the background rate from all other reactors is larger at Morton than at Boulby, it is a smaller fraction of the signal rate from the proximal reactor at Morton than at Boulby. Moreover, the Hartlepool power plant has two cores whereas the Perry plant has a single core. The Boulby site, therefore, offers an opportunity for remotely monitoring the on/off cycle of a reactor core under more stringent conditions than does the Morton site.
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino
For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, a
Antineutrinos stream freely from rapidly decaying fission products within the cores of nuclear reactors and from long-lived natural radioactivity within the rocky layers of the Earth. These global antineutrinos produce detectable signals in large ult
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude a
We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside