ﻻ يوجد ملخص باللغة العربية
Antineutrinos stream freely from rapidly decaying fission products within the cores of nuclear reactors and from long-lived natural radioactivity within the rocky layers of the Earth. These global antineutrinos produce detectable signals in large ultra-clear volumes of water- or hydrocarbon-based target liquids, which are viewed by inward-facing photomultiplier tubes. Detected antineutrinos provide information about their shrouded sources and about the fundamental properties of neutrinos themselves. This paper presents the input data, formulae, and plots resulting from the calculations, which, in addition to the time-dependent reaction rates and energy spectra, model the directions of the antineutrinos from IAEA-registered nuclear power reactors and of the neutrinos from $^8$B decay in the Sun. The model includes estimates of the steady state reaction rates and energy spectra of the antineutrinos from the crust and mantle of the Earth. Results are available for any location near the surface of the Earth and comprise both quasi-elastic scattering on free protons and elastic scattering on atomic electrons. This paper compares model results for two underground locations, the Boulby Mine in the United Kingdom and the Morton Salt Mine in the United States. Operational nuclear power reactors are within about $20$ kilometers of these mines, making them candidate sites for antineutrino detectors capable of identifying, monitoring, and locating remote nuclear activity. The model, which is implemented in a web application at https://geoneutrinos.org/reactors/, provides references for the input data and the formulae, as well as an interactive calculator of the significance of the rate of any of the neutrino sources relative to other sources taken as background.
Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This paper presents calcula
Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-l
Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the
The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay event
The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. Th