ﻻ يوجد ملخص باللغة العربية
Verification theorems are key results to successfully employ the dynamic programming approach to optimal control problems. In this paper we introduce a new method to prove verification theorems for infinite dimensional stochastic optimal control problems. The method applies in the case of additively controlled Ornstein-Uhlenbeck processes, when the associated Hamilton-Jacobi-Bellman (HJB) equation admits a mild solution. The main methodological novelty of our result relies on the fact that it is not needed to prove, as in previous literature, that the mild solution is a strong solution, i.e. a suitable limit of classical solutions of the HJB equation. To achieve our goal we prove a new type of Dynkin formula, which is the key tool for the proof of our main result.
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process
We establish a generalization of Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton-Jacobi-Bellman equation associated to an opt
This paper deals with a family of stochastic control problems in Hilbert spaces which arises in typical applications (such as boundary control and control of delay equations with delay in the control) and for which is difficult to apply the dynamic p
Scenario-based stochastic optimal control problems suffer from the curse of dimensionality as they can easily grow to six and seven figure sizes. First-order methods are suitable as they can deal with such large-scale problems, but may fail to achiev