ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Control Problems with Unbounded Control Operators: solutions through generalized derivatives

109   0   0.0 ( 0 )
 نشر من قبل Federica Masiero
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with a family of stochastic control problems in Hilbert spaces which arises in typical applications (such as boundary control and control of delay equations with delay in the control) and for which is difficult to apply the dynamic programming approach due to the unboudedness of the control operator and to the lack of regularity of the underlying transition semigroup. We introduce a specific concept of partial derivative, designed for this situation, and we develop a method to prove that the associated HJB equation has a solution with enough regularity to find optimal controls in feedback form.



قيم البحث

اقرأ أيضاً

95 - Jingrui Sun , Zhen Wu , Jie Xiong 2021
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process es are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
We consider the framework of high dimensional stochastic control problem, in which the controls are aggregated in the cost function. As first contribution we introduce a modified problem, whose optimal control is under some reasonable assumptions an $varepsilon$-optimal solution of the original problem. As second contribution, we present a decentralized algorithm whose convergence to the solution of the modified problem is established. Finally, we study the application to a problem of coordination of energy consumption and production of domestic appliances.
We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformula ted in terms of probabilistic constraints. It is shown that, for a suitable parametrization of the control policy, a wide class of the resulting optimization problems are convex, or admit reasonable convex approximations.
We study a class of infinite-dimensional singular stochastic control problems with applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially-ordered infinite-dimensional s pace X, it takes values in the positive cone of X, and it has right-continuous and nondecreasing paths. We first provide a rigorous formulation of the problem by properly defining the controlled dynamics and integrals with respect to the control process. We then exploit the concave structure of our problem and derive necessary and sufficient first-order conditions for optimality. The latter are finally exploited in a specification of the model where we find an explicit expression of the optimal control. The techniques used are those of semigroup theory, vector-valued integration, convex analysis, and general theory of stochastic processes.
We establish existence and uniqueness for infinite dimensional Riccati equations taking values in the Banach space L 1 ($mu$ $otimes$ $mu$) for certain signed matrix measures $mu$ which are not necessarily finite. Such equations can be seen as the in finite dimensional analogue of matrix Riccati equations and they appear in the Linear-Quadratic control theory of stochastic Volterra equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا